Arrel quadrada

De Viquipèdia
Dreceres ràpides: navegació, cerca
Representació gràfica de la funció \sqrt{x}

En matemàtiques, una arrel quadrada d'un nombre real no negatiu x és qualsevol nombre real que, multiplicat amb si mateix, dóna x. Per exemple, les arrels quadrades de 16 són 4 i -4, ja que 4 × 4 = (-4) x (-4) = 16.

L'arrel quadrada principal \sqrt{x} d'un nombre real no negatiu x és l'única arrel quadrada no negativa (si existeix). Per exemple \sqrt{16} = 4, mentre que \sqrt{16} \ne -4. Sovint s'utilitza només arrel quadrada per anomenar l'arrel quadrada principal.

Les arrels quadrades són importants en la resolució d'equacions quadràtiques.

La generalització de la funció arrel quadrada als nombres negatius dóna lloc als nombres imaginaris i al cos dels nombres complexos.

El símbol de l'arrel quadrada es va emprar per primera vegada en el segle XVI. S'ha especulat que va tenir el seu origen en una forma alterada de la lletra r minúscula, que representaria la paraula llatina "radix", que significa "arrel".

Propietats[modifica | modifica el codi]

Les següents propietats de l'arrel quadrada són vàlides per a tots els nombres reals no negatius x, y:

\sqrt{xy} = \sqrt{x} \sqrt{y}
\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}
\sqrt{x^2} = \left|x\right| per a tot nombre real x (vegeu valor absolut)
\sqrt{x} = x^{\frac{1}{2}}

La funció arrel quadrada, en general, transforma nombres racionals en nombres algebraics; \sqrt{x} és racional si i només si x és un nombre racional que pot escriure's com a fracció de dos quadrats perfectes. Si el denominador és 12 = 1, llavors es tracta d'un nombre natural. No obstant això, \sqrt{2} és irracional.

La funció arrel quadrada transforma la superfície d'un quadrat en la longitud del seu costat.

Extreure factors[modifica | modifica el codi]

Per extreure factors d'una arrel, és a dir, deixar-los en forma de potències multiplicant per l'arrel, s'han de treure dividint per l'índex. Tenim una arrel d'índex 3. A dins, tenim '2^8·9'.

Per deixar a fora (multiplicant per l'arrel) tot el que es pugui, primer s'ha de veure tot el que podem extreure: Si hi ha un 2^8, es descompon una part, deixant-ho a 2^6·2. El 9 no es pot extreure, perquè descompost és 3^2, i el seu exponent no es pot dividir entre l'índex, que en aquest cas és 3.

Quedarà: 2^2 arrel de 2^2·9, perquè 6 (exponent del 2 quan estava inclosa a l'arrel) dividit entre 3 (índex de l'arrel) és igual a 2 (i és la potència que li queda al 2 exclòs de l'arrel).

Mitjana geomètrica[modifica | modifica el codi]

La mitjana geomètrica de dos nombres reals no negatius x, y és:

m_g = \sqrt{xy}

Compleix la desigualtat:

 m_g\leq m_a,
on \ m_a és la mitjana aritmètica : m_a = \frac{x + y}{2}.

A més:

\ m_g = m_a si i només si \ x = y, ja que
\frac{x + x}{2} = x, i  \sqrt{xx} = x.
A Wikimedia Commons hi ha contingut multimèdia relatiu a: Arrel quadrada Modifica l'enllaç a Wikidata