Bernard Bolzano

De Viquipèdia
Dreceres ràpides: navegació, cerca
Bernard Bolzano

Bernard Placidus Johann Nepomuk Bolzano (Praga, Bohèmia (actual República Txeca), 5 d'octubre de 1781 - ídem, 18 de desembre de 1848), conegut com a Bernard Bolzano va ser un matemàtic, lògic, filòsof i teòleg bohemi que va escriure en alemany i que va realitzar importants contribucions a les matemàtiques i a la Teoria del coneixement.

En matemàtiques, se'l coneix pel teorema de Bolzano i el teorema de Bolzano-Weierstrass, que va esbossar com a lema d'un altre treball en 1817, que dècades després hauria de desenvolupar Karl Weierstrass. A la seva filosofia, Bolzano va criticar l'idealisme de Hegel i Kant afirmant que els nombres, les idees, i les veritats existeixen de manera independent a les persones que els pensin.

Biografia[modifica | modifica el codi]

En 1796 Bolzano es va inscriure a la Facultat de Filosofia de la Universitat de Praga. A la tardor de 1800 va començar a estudiar Teologia,[1] a la que va dedicar els següents tres anys, durant els quals també va preparar la seva tesi doctoral en Geometria. Aconseguí el doctorat en 1804, després d'haver redactat una tesi en què expressava la seva opinió sobre les Matemàtiques i sobre les característiques d'una correcta demostració matemàtica. En el pròleg va escriure: "No podria sentir-me satisfet per una demostració estrictament rigorosa, si aquesta no derivés dels conceptes continguts en la tesi que ha de demostrar." Dos anys després de ser nomenat doctor es va ordenar com a sacerdot catòlic romà.

La seva autèntica vocació era la docència, i en 1804 va obtenir la càtedra de Filosofia i Religió a la Universitat de Praga. Els seus ensenyaments estaven impregnades per forts ideals pacifistes i per una viva exigència de justícia política. A més, Bolzano gaudia, per les seves qualitats intel·lectuals, d'un enorme prestigi entre els seus col·legues professors i entre els estudiants. Després d'algunes pressions del govern austríac, el 1819 Bolzano va ser acusat d'heretgia i sota arrest domiciliari se li va prohibir publicar.[2] Malgrat la censura del govern, els seus llibres es van publicar fora de l'Imperi austríac i Bolzano va seguir escrivint i ocupant un important paper dins de la vida intel·lectual del seu país.

Bolzano va escriure en 1810 Beiträge zu einer begründeteren Darstellung der Mathematik. Erste Lieferung, la primera d'una sèrie programada d'escrits sobre fonaments de les matemàtiques. A la segona part trobem Der binomische Lehrsatzl de 1816 i Rein analytischer Beweis (Pura demostració matemàtica) de 1817, que contenen un intent d'impostació del càlcul infinitesimal que no recorre al concepte de infinitesimal. En el pròleg del primer de tots dos declara que el seu treball és un exemple de la nova manera de desenvolupar l'anàlisi matemàtica. En el treball de 1817 Bolzano entenia que alliberava els conceptes de límit, convergència i derivada de nocions geomètriques, substituint-les per conceptes purament aritmètics i numèrics.

Bolzano era conscient de l'existència d'un problema més profund: era necessari refinar i enriquir el propi concepte de nombre. En aquest treball cal situar la demostració del teorema del valor intermedi amb la nova aproximació de Bolzano, concepte que apareix en un treball de Augustin Louis Cauchy aparegut quatre anys després.

Després de 1817, Bolzano va estar molts anys sense publicar res relacionat amb les matemàtiques. No obstant això, en 1837, va publicar Wissenschaftslehre, un intent d'elaborar una teoria del coneixement i de la ciència completa. Bolzano va intentar proporcionar fonaments lògics a totes les ciències, construïdes partint d'abstraccions, d'objectes abstractes, d'atributs, de construccions de demostracions, vincles... La major part d'aquests intents reprenen aquests treballs anteriors que afecten la relació objectiva entre les conseqüències lògiques i la nostra percepció purament subjectiva d'aquestes conseqüències. Aquí s'apropa a la filosofia de les matemàtiques. Per Bolzano, no tenim cap certesa quant a les veritats, o a les suposades com a tals, de la naturalesa o de les matemàtiques, i precisament el paper de les ciències, tant pures com aplicades és trobar una justificació de les veritats fonamentals, que sovint contradiuen les nostres intuïcions. Entre 1830 i 1840, Bolzano va treballar en una obra major, Grössenlehre en què tractarà de reinterpretar tota la matemàtica sota bases lògiques. Només va arribar a publicar una part, esperant que els seus alumnes prosseguissin la seva obra i publiquessin una versió completa.

El 1854, tres anys després de la seva mort, un alumne seu va publicar l'obra de Bolzano Paradoxien des Unendlichen, un estudi sobre les paradoxes de l'infinit. Apareix per primera vegada el terme "conjunt", en la forma alemanya Menge. En aquest treball Bolzano aporta exemples de correspondència biunívoca entre els elements d'un conjunt infinit i fins i tot d'un subconjunt. La major part dels treballs de Bolzano van romandre en forma de manuscrit, pel que va haver una circulació molt reduïda i una escassa influència en el desenvolupament de la matèria. Moltes de les seves obres no es van publicar fins a 1862 i fins i tot després.

Les teories de Bolzano sobre l'infinit matemàtic van anticipar les de Georg Cantor sobre conjunts infinits.

Referències[modifica | modifica el codi]

  1. Lapointe, Sandra. Bolzano's Theoretical Philosophy (en anglès). Palgrave Macmillan, 2011, p. 1. ISBN 0230201490. 
  2. O'Hear, Anthony. German Philosophy Since Kant (en anglès). Cambridge University Press, 1999, p. 111. ISBN 0521667828. 

Bibliografia[modifica | modifica el codi]

  • Boyer, Carl B. (1959), The history of the calculus and its conceptual development, New York: Dover Publications, MR0124178.
  • Boyer, Carl B.; Merzbach, Uta C. (1991), A History of Mathematics, New York: John Wiley & Sons, ISBN 978-0-471-54397-8.
  • Ewald, William B., ed. (1996), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 2 volumes, Oxford University Press.
  • O'Connor, John J.; Robertson, Edmund F. (2005), "Bolzano", MacTutor History of Mathematics archive.
  • Künne, Wolfgang (1998), "Bolzano, Bernard", Routledge Encyclopedia of Philosophy, 1, London: Routledge, pp. 823–827. Retrieved on 2007-03-05
A Wikimedia Commons hi ha contingut multimèdia relatiu a: Bernard Bolzano Modifica l'enllaç a Wikidata