Bonaventura Cavalieri

De Viquipèdia
Dreceres ràpides: navegació, cerca
Bonaventura Cavalieri
Bonaventura Cavalieri - Milanese - Giesuato
Bonaventura Cavalieri - Milanese - Giesuato
Naixement probablement 1598
Milà, Sacre Imperi, avui Itàlia
Mort 30 de novembre de 1647 (als 49 anys)
Bolonya, Estats Pontificis, avui Itàlia
Camp Matemàtiques
Institucions Universitat de Bolonya
Universitat Universitat de Pisa
Assessorament acadèmic   Benedetto Castelli
Estudiants doctorals   Pietro Mengoli
Stefano degli Angeli
Treball(s) Mètode dels indivisibles
Ha influenciat Evangelista Torricelli
John Wallis
Influències de Galileu


Bonaventura Cavalieri (Milà, 1598 - Bolonya, 1647) fou un jesuat[1] i matemàtic italià, seguidor de Galileu i autor del mètode dels indivisibles.

Vida[modifica | modifica el codi]

No es coneix del cert la data del seu naixement, però pels anys que tenia en morir sembla que va ser el 1598. El seu nom, Bonaventura, el va adoptar en ingressar a l'orde dels jesuats, el 1615 a Milà. El 1616 va ser transferita al monestir jesuat de Pisa, on va conéixer Benedetto Castelli, professor de matemàtiques en la universitat d'aquesta ciutat i ajudant de Galileu. Castelli el va estimular en l'estudi de la geometria a través de les obres d'Euclides, d'Arquimedes, d'Apol·loni i de Pappos. Castelli el va presentar a Galileu, del qui sempre es va considerar deixeble i amb qui va mantenir un nodrida corresponència.[2]

El 1621, va ser ordenat diaca del cardenal Federigo Borromeo a Milà, on també va ser professor de teologia al Monestir de San Girolamo. Segurament va ser en aquesta època on va començar a desenvolupar les seves idees sobre el mètode dels indivisibles. Entre 1623 i 1626 va ser prior del monestir de Sant Pere a Lodi, ciutat propera a Milà. i de 1626 a 1629 al monestir dels jesuats de Parma, on va intentar, sense èxit, ser professor de la seva Universitat.

En 1629 va ser nomenat professor de matemàtiques en la Universitat de Bolonya, amb el recolzament de Galileu, qui va glosar la seva figura a Cesare Marsili, un membre de l'Accademia dei Lincei que havia estat comissionat per trobar un professor de matemàtiques per aquella institució. Cavalieri va mantenir aquesta posició fins a la seva mort, compatibilitzant-la amb el seu càrrec de prior del monestir dels jesuats a Bolonya, a l'església de Santa Maria della Mascarella.

Obra[modifica | modifica el codi]

Totes les seves obres es van publicar mentre era professor a Bolonya, enacara que algunes estaven acabades anteriorment:

  • Directorium generate uranometricum (Bologna, 1632)
  • Geometria indivisibilibus continuorum nova quadam ratione promota (Bologna, 1635; 2a ed., 1653)
  • Compendio delle regole dei triangoli con le loro dimostrationi (Bologna, 1638)
  • Centuria di varii problemi (Bologna, 1639)
  • Nuova pratica astrologica (Bologna, 1639), basada en la teoria heliocèntrica copernicana.
  • Tavola prima logaritmica. Tavola seconda logaritmica (Bologna, n. d.) amb la que va introduir els logaritmes a Itàlia.
  • Appendice della nuova pratica astrologica (Bologna. 1640)
  • Trigonometria plana, et sphaerica, linearis et logarithmica (Bologna, 1643)
  • Trattato della ruota planetaria perpetua (Bologna, 1646)
  • Exercitationes geometricae sex (Bologna, 1647).

El mètode dels indivisibles[modifica | modifica el codi]

Cavalieri és conegut, sobretot, per introduir el denominat mètode dels indivisibles, un precursor del actual càlcul infinitesimal. Aquest mètode és explicat en la seva segona obra, Geometria indivisibilibus continuorum, i matitzat i ampliat en la darrera, Exercitationes geometricae sex.[3]

La idea bàsica de Cavalieri és que totes les línies d'una figura plana P es poden definir com \phi (l). De la mateixa manera, tots els plans d'una figura sòlida S es poden definir com \phi (p).[4] Cavalieri és força curós en no confondre P amb \phi (l), ja que això implicaria una contradicció lògica: els plans no estan composats per línies, són continus;[5] ni els sòlids composats per plans. Els conceptes totes les línies i tots els plans no són una mera juxtaposició de línies o plans que formen plans o sòlids respectivament.

La base dels seus càlculs és, doncs, el que avui es coneix com Principi de Cavalieri: Si dues figues planes tenen la mateixa altitud i les seccions fetes per línies paral·leles a la base a les mateixes distàncies tenen sempre la mateixa proporció, aleshores, les figures tenen aquesta proporció.[6]

Paul Guldin, en el tercer llibre del seu Centrobaryca, va criticar fortament aquest mètode afirmant que era molt diferent de l'utilitzat per Kepler en la seva Nova Stereometria.[7] Per això, Cavalieri va dedicar l'exercici III del seu Exercitationes a respondre les objeccions de Guldin.

Referències[modifica | modifica el codi]

  1. No confondre jesuat amb jesuïta.
  2. Es conserven 112 cartes entre ambdós personatges. Caruccio, Dictionary of Scientific Biography.
  3. Katz, pàgina 435.
  4. Massa i Esteve, pàgines 79-80.
  5. En una carta a Galileu de 28 de juny de 1639, Cavalieri diu: No vull pas dir que el continu està compost d'indivisibles, però mostraré que el continu no té altra proporció que la del munt d'indivisibles.Massa i Esteve, pàgina 83.
  6. Katz, pàgina 436. Massa i Esteve, pàgina 89.
  7. Per a Kepler, les parts d'un continu són infinites, infinitament petites i de la mateixa dimensió que el continu. Massa i Esteve, pàgina 71.

Bibliografia[modifica | modifica el codi]

Enllaços externs[modifica | modifica el codi]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Bonaventura Cavalieri