Funció el·líptica

De Viquipèdia
Dreceres ràpides: navegació, cerca
Aquesta imatge mostra la part real de les funcions líptiques de Weierstrass invariant G3 = 140 G-6 en funció de la plaça de la q nome = exp (iπτ) al disc unitat (q)<1. És a dir, πτ va de 0 a 2π al llarg de la vora del disc. Les zones negres indiquen les regions on la part real és zero; les zones blau i verd on el valor és petit i positiu, groc i vermell on és gran i positiu.

En anàlisi complexa, una funció el·líptica és, parlant toscament, una funció definida sobre el plànol complex i periòdica en ambdues direccions. Les funcions el·líptiques poden ser vistes com les anàlogues a les funcions trigonomètriques (les quals únicament tenen la periodicitat en una dimensió). Històricament, les funcions el·líptiques van ser descobertes com les funcions inverses de les integrals el·líptiques; aquestes van ser estudiades en relació amb el problema de la longitud d'arc en una el·lipse, d'on el nom es deriva.

Definició[modifica | modifica el codi]

Formalment, una funció el·líptica és una funció diferenciable a l'entorn de tots els punts del seu domini f definida sobre C per a la qual existeixen dos nombres complexos no nuls a i b tal que

f(z + a) = f(z + b) = f(z) per a tot z pertanyent a C

i tal que a/b no és un real. D'això es dedueix que

f(z + ma + nb) = f(z) per a tot z pertanyent a C i per a tot enter m i n.

En el desenvolupament de la teoria de les funcions el·líptiques, la majoria d'autors moderns utilitzen la notació creada per Karl Weierstrass: la notació de les funcions el·líptiques en forma de Weierstrass basades en la funció \wp és còmoda i qualsevol funció el·líptica pot ser expressada a partir d'aquestes. Weierstrass es va interessar en aquestes funcions quan era estudianta de Christoph Gudermann, un estudiant de Carl Friedrich Gauss. Les funcions el·líptiques de Jacobi introduïdes per Carl Jacobi, i la funció auxiliar theta (no doble periòdica), són més complicades però ambdues importants per a la història i per a la teoria general. La diferència més important entre aquestes dues teories és que les funcions de Weierstrass tenen pols d'alt ordre situats en els cantons d'un reticle periòdic, mentre que les funcions de Jacobi tenen pols simples.

L'estudi de les funcions el·líptiques està estretament relacionat amb l'estudi de les funcions modulars i les formes modulars, relació demostrada pel teorema de Taniyama-Shimura. Alguns exemples d'aquesta relació són l'invariant j, les sèries de Eisenstein i la funció Dedekind eta.

Propietats[modifica | modifica el codi]

Qualsevol nombre ω tal que f(z + ω) = f(z) per a tota z de C s'anomena període de f. Si dos períodes a i b són tals que qualsevol altre període ω pot ser escrit com ω = ma + nb amb m i n enters, llavors a i b se'ls diu períodes fonamentals. Tota funció el·líptica té un parell fonamental de períodes, encara que aquest parell no és únic, com es descriu més endavant.

Si a i b són períodes fonamentals que descriuen un reticle, llavors exactament el mateix reticle pot ser obtingut pels períodes fonamentals a' i b' on a' = p a + q b i b' = r·a + s·b on p, q, r i s són enters que satisfan p s - q r = 1. Dita d'altra forma, la matriu \begin{pmatrix} p & q \\ r & s \end{pmatrix} té determinant unitat, pel que pertany al grup modular. En altres paraules, si a i b són períodes fonamentals d'una funció el·líptica, llavors també ho són a' i b' .

Si a i b són períodes fonamentals, llavors qualsevol paral·lelogram amb vèrtex z, z + a, z + b, z + a + b se l'anomena paral·lelogram fonamental. Movent aquest paral·lelogram múltiples d'a i b obtenim una còpia del paral·lelogram, i la funció f es comporta idènticament sobre totes aquestes còpies, a causa d'aquesta periodicitat.

El nombre de pols és qualsevol paral·lelogram és finit (i igualment per a tot paral·lelogram fonamental). Tret que la funció el·líptica sigui constant, tot paral·lelogram fonamental té almenys un pol com a conseqüència del teorema de Liouville.

La suma dels ordres dels pols en qualsevol paral·lelogram fonamental s'anomena l'ordre de la funció el·líptica. La suma dels residus dels pols en qualsevol paral·lelograms fonamental és igual a zero, en particular, cap funció el·líptica pot tenir ordre u.

El nombre de zeros (contats amb la seva multiplicitat) en qualsevol paral·lelogram fonamental és igual a l'ordre de la funció el·líptica.

La derivada d'una funció el·líptica és altra funció el·líptica amb els mateixos períodes. El conjunt de totes les funcions el·líptiques amb el mateix període fonamental formen un cos.

Les funcions el·líptiques en forma de Weierstrass \wp són el prototip de funció el·líptica, i de fet, el cos de funcions el·líptiques per a un reticle donat es genera a partir d'\wp i la seva derivada \wp'.

Vegeu també[modifica | modifica el codi]

Enllaços externs[modifica | modifica el codi]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Funció el·líptica Modifica l'enllaç a Wikidata