Gas real

De Viquipèdia
Dreceres ràpides: navegació, cerca

Els gasos reals –en contraposició als gasos ideals– tenen propietats que no es poden explicar enterament a partir de la llei dels gasos ideals. Per entendre el comportament dels gasos reals cal tenir en compte els següents punts:

Per la majoria d'aplicacions pràctiques no cal fer una anàlisi tan detallada, i l'aproximació al gas ideal es pot fer a partir de models que donen un resultat d'una precisió acceptable. Els models, però, s'han d'aplicar en condicions especials, com ara en el punt de condensació, prop d'un punt crític, sota pressions molt elevades, etc.

Models[modifica | modifica el codi]

Isotermes d'un gas real (esquemàtic)

Corbes blau fosques: isotermes sota la temperatura crítica. Seccions verdes: estats metaestables.

Secció a l'esquerra del punt F: líquid normal.
Punt F: punt d'ebullició.
Línia FG: Vequilibri de les fases líquida i gasosa.
Secció FA: líquid superescalfat.
Secció F′A – líquid estirat (p<0).
Secció AC: continuació analítica de la isoterma, físicament impossible.
Secció CG: vapor superrefredat.
Punt G: punt de rosada.
Línia a la dreta del punt G: gas normal.
Les àrees FAB i GCB són iguals.

Corba vermella: isoterma crítica.
Punt K: punt crític.

Corbes blau clares: isotermes supercrítiques
Article principal: Equació d'estat

Model de van der Waals[modifica | modifica el codi]

Article principal: Equació de van der Waals

Els gasos reals se solen modelar tenint en compte el seu pes molar i volum molar amb l'equació de van der Waals:

RT=\left(P+\frac{a}{V_m^2}\right)(V_m-b)

On P és la pressió, T és la temperatura, R és la constant dels gasos i Vm el volum molar. a i b són paràmetres que es determinen empíricament per cada cas, però de vegades s'estimen a partir de la temperatura crítica (Tc) i la pressió crítica (Pc) amb les següents relacions:

a=\frac{27R^2T_c^2}{64P_c}
b=\frac{RT_c}{8P_c}

Model de Redlich–Kwong[modifica | modifica el codi]

Article principal: Equació de Redlich–Kwong

L'equació de Redlich–Kwong és una altra equació de dos paràmetres utilitzada per modelar gasos reals. Quasi sempre és més acurada que l'equació de van der Waals, i també sovint més acurada que algunes equacions de més de dos paràmetres. L'equació és:

RT=P(V_m-b)+\frac{a}{V_m(V_m+b)T^\frac{1}{2}}(V_m-b)

On a i b són dos paràmetres empírics diferents que els paràmetres de l'equació de van der Waals. Es determinen de la següent manera:

a=0.4275\frac{R^2T_c^{2.5}}{P_c}

b=0.0867\frac{RT_c}{P_c}

Model de Berthelot i model de Berthelot modificat[modifica | modifica el codi]

L'equació de Berthelot (anomenada en honor a D. Berthelot[1] és la següent:

P=\frac{RT}{V_m-b}-\frac{a}{TV_m^2}

La versió modificada és més acurada:

P=\frac{RT}{V_m}\left[1+\frac{9P/P_c}{128T/T_c}\left(1-\frac{6}{(T/T_c)^2}\right)\right]

Model de Dieterici[modifica | modifica el codi]

Aquest model (anomenar en honor a C. Dieterici[2]) actualment ja cau en desús. És:

P=RT\frac{\exp{(\frac{-a}{V_mRT})}}{V_m-b}

Model de Clausius[modifica | modifica el codi]

L'equació de Clausius (anomenada en honor a Rudolf Clausius) és una equació simple de tres paràmetres:

RT=\left(P+\frac{a}{T(V_m+c)^2}\right)(V_m-b)

On:

a=\frac{27R^2T_c^3}{64P_c}

b=V_c-\frac{RT_c}{4P_c}

c=\frac{3RT_c}{8P_c}-V_c

Vc és el volum crític.

Model de virial[modifica | modifica el codi]

Article principal: Teorema de virial

L'equació de virial deriva del tractament de pertorbacions de la mecànica estadística:

PV_m=RT\left(1+\frac{B(T)}{V_m}+\frac{C(T)}{V_m^2}+\frac{D(T)}{V_m^3}+...\right)

O alternativament

PV_m=RT\left(1+\frac{B^\prime(T)}{P}+\frac{C^\prime(T)}{P^2}+\frac{D^\prime(T)}{P^3}+...\right)

On A, B, C, A′, B′, i C′ són constants que depenen de la temperatura.

Model de Peng–Robinson[modifica | modifica el codi]

Aquesta equació de dos paràmetres (anomenada en honor a D.-Y. Peng i D. B. Robinson[3]) té la propietat interessant que és útil també per modelar alguns líquids:

P=\frac{RT}{V_m-b}-\frac{a(T)}{V_m(V_m+b)+b(Vm-b)}

Model de Wohl[modifica | modifica el codi]

L'equació de Wohl (anomenada en honor a A. Wohl[4]) es formula en termes de volum crític, per la qual cosa és útil si no es coneixen les constants de gasos.

RT=\left(P+\frac{a}{TV_m(V_m-b)}-\frac{c}{T^2V_m^3}\right)(V_m-b)

On:

a=6P_cT_cV_c^2

b=\frac{V_c}{4}

c=4P_cT_c^2V_c^3.

Model de Beattie–Bridgeman[modifica | modifica el codi]

Aquesta equació es basa en cinc constants determinades experimentalment.[5] S'expressa com:

P=\frac{RT}{v^2}\left(1-\frac{c}{vT^3})\right)(v+B)-\frac{A}{V^2}

On:

A = A_0 \left(1 - \frac{a}{v} \right)
B = B_0 \left(1 - \frac{b}{v} \right)

Aquesta equació és raonablement acurada per densitats de fins a 0.8ρcr, on ρcr és la densitat de la substància al punt crític. Les constants s'extreuen de la taula següent, on P és en kPa, v és en m3/kmol, T és en K i R és la constant dels gasos.[6]

Gas A0 a B0 b c
Aire 131,8441 0,01931 0,04611 -0,001101 4,34×10^4
Argó 130,7802 0,02328 0,03931 0,0 5,99×10^4
Diòxid de carboni 507,2836 0,07132 0,10476 0,07235 6,60×10^5
Heli 2,1886 0,05984 0,01400 0,0 40
Hidrogen 20,0117 -0,00506 0,02096 -0,04359 504
Nitrogen 136,2315 0,02617 0,05046 -0,00691 4,20×10^4
Oxigen 151,0857 0,02562 0,04624 0,004208 4,80×10^4

Model de Benedict–Webb–Rubin[modifica | modifica el codi]

L'equació de Benedict–Webb–Rubin, o equació de BWR, és:

P=RTd+d^2\left(RT(B+bd)-(A+ad-a{\alpha}d^4)-\frac{1}{T^2}[C-cd(1+{\gamma}d^2)\exp(-{\gamma}d^2)]\right)

On d és la densitat molar i a, b, c, A, B, C, α i γ són constants empíriques. Cal notar que la constant γ és una derivada de la constant α i, per tant, és quasi igual a 1.

Referències[modifica | modifica el codi]

  1. D. Berthelot a Travaux et Mémoires du Bureau international des Poids et Mesures – Tome XIII (Paris: Gauthier-Villars, 1907)
  2. C. Dieterici, Ann. Phys. Chem. Wiedemanns Ann. 69, 685 (1899)
  3. Peng, D. Y., and Robinson, D. B.. «A New Two-Constant Equation of State» (en anglès). Industrial and Engineering Chemistry: Fundamentals, vol. 15, 1976, pàg. 59–64. DOI: 10.1021/i160057a011.
  4. A. Wohl, "Investigation of the condition equation", Zeitschrift für Physikalische Chemie (Leipzig) 87 pp. 1–39 (1914)
  5. Yunus A. Cengel and Michael A. Boles, Thermodynamics: An Engineering Approach, 7a ed., McGraw-Hill, 2010, ISBN 007-352932-X
  6. Gordan J. Van Wylen and Richard E.Sonntage, Fundamental of classical Thermodynamics, 3a ed,John Wiley &Sons, 1986, pàg. 46, taula 3.3

Bibliografia[modifica | modifica el codi]

Vegeu també[modifica | modifica el codi]