Llista d'integrals d'inverses de funcions trigonomètriques

De Viquipèdia
Dreceres ràpides: navegació, cerca

Tot seguit es presenta una llista de primitives d'inverses de funcions trigonomètriques. Per consultar una llista completa de primitives de tot tipus de funcions adreceu-vos a taula d'integrals

La constant c se suposa diferent de zero.

Nota: Hi ha tres notacions habituals per a referir-se a les inverses de les funcions trigonomètriques. La inversa de la funció sSinus, per exemple, es pot escriure com sin−1, asin, o, tal com es fa en aquest article, arcsin.

Arcsinus[modifica | modifica el codi]

\int \arcsin x \,dx = x\arcsin x+ \sqrt{1-x^2}
\int \arcsin \frac{x}{c} \ dx = x \arcsin \frac{x}{c} + \sqrt{c^2 - x^2}
\int x \arcsin \frac{x}{c} \ dx = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arcsin \frac{x}{c} + \frac{x}{4} \sqrt{c^2 - x^2}
\int x^2 \arcsin \frac{x}{c} \ dx = \frac{x^3}{3} \arcsin \frac{x}{c} + \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}
\int x^n \arcsin x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ dx \right)

Arccosinus[modifica | modifica el codi]

\int \arccos x \,dx = x\arccos x- \sqrt{1-x^2}
\int \arccos \frac{x}{c} \ dx = x \arccos \frac{x}{c} - \sqrt{c^2 - x^2}
\int x \arccos \frac{x}{c} \ dx = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arccos \frac{x}{c} - \frac{x}{4} \sqrt{c^2 - x^2}
\int x^2 \arccos \frac{x}{c} \ dx = \frac{x^3}{3} \arccos \frac{x}{c} - \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}

Arctangent[modifica | modifica el codi]

\int \arctan x \,dx = x\arctan x- \frac{1}{2}\ln|1+x^2|
\int \arctan\big( \frac{x}{c}\big) dx = x \arctan \big( \frac{x}{c} \big) - \frac{c}{2} \ln(1 + \frac{x^2}{c^2})
\int x \arctan\big( \frac{x}{c}\big) dx = \frac{ (c^2 + x^2) \arctan \big( \frac{x}{c} \big) - c x}{2}
\int x^2 \arctan\big( \frac{x}{c}\big) dx = \frac{x^3}{3} \arctan \big(\frac{x}{c}\big) - \frac{c x^2}{6} + \frac{c^3}{6} \ln|{c^2 + x^2}|
\int x^n \arctan \big( \frac{x}{c}\big) dx = \frac{x^{n + 1}}{n + 1} \arctan \big( \frac{x}{c} \big) - \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ dx, \quad n \neq -1

Arccosecant[modifica | modifica el codi]

\int \arccsc x \,dx = x\arccsc x+ \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right|
\int \arccsc \frac{x}{c} \ dx = x \arccsc \frac{x}{c} + {c} \ln{(\frac{x}{c}(\sqrt{1-\frac{c^2}{x^2}} + 1))}
\int x \arccsc \frac{x}{c} \ dx = \frac{x^2}{2} \arccsc \frac{x}{c} + \frac{cx}{2} \sqrt{1-\frac{c^2}{x^2}}

Arcsecant[modifica | modifica el codi]

\int \arcsec x \,dx = x\arcsec x- \ln\left| x+x\sqrt{{x^2-1}\over x^2}\right|
\int \arcsec \frac{x}{c} \ dx = x \arcsec \frac{x}{c} + \frac{x}{c |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right|
\int x \arcsec x \ dx = \frac{1}{2} \left( x^2 \arcsec x - \sqrt{x^2 - 1} \right)
\int x^n \arcsec x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsec x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + (1 - n) \left( x^{n - 1} \arcsec x + (1 - n) \int x^{n - 2} \arcsec x \ dx \right) \right] \right)

Arccotangent[modifica | modifica el codi]

\int \arccot x \,dx = x\arccot x+ \frac{1}{2} \ln|1+x^2|
\int \arccot \frac{x}{c} \ dx = x \arccot \frac{x}{c} + \frac{c}{2} \ln(c^2 + x^2)
\int x \arccot \frac{x}{c} \ dx = \frac{c^2 + x^2}{2} \arccot \frac{x}{c} + \frac{c x}{2}
\int x^2 \arccot \frac{x}{c} \ dx = \frac{x^3}{3} \arccot \frac{x}{c} + \frac{c x^2}{6} - \frac{c^3}{6} \ln(c^2 + x^2)
\int x^n \arccot \frac{x}{c} \ dx = \frac{x^{n + 1}}{n+1} \arccot \frac{x}{c} + \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ dx, \quad n \neq 1