Nombre de Pisot

De Viquipèdia
Dreceres ràpides: navegació, cerca

En matemàtiques, un Nombre de Pisot-Vijayaraghavan, també anomenat simplement Nombre de Pisot o Nombre PV, és un enter algebraic real estrictament superior a 1, que té tots els seus elements conjugats de Valor absolut estrictament inferior a 1.

Per exemple, el nombre enter quadràtic \alpha\ = a + b\sqrt d\,, en el que a i b són tots dos enters o la meitat d'un enter senar, admet un conjugat \alpha' = a - b\sqrt d\,; les condicions perquè sigui Nombre de Pisot són, doncs:

\alpha > 1\quad\text{i}\quad- 1< \alpha' < 1.

Aquestes condicions són satisfetes pel nombre auri \varphi, ja que:

\varphi = \frac{1 + \sqrt5}2> 1\quad\text{i}\quad\varphi' = \frac{1 - \sqrt5}2= \frac{-1}{\varphi}.

La condició general va ser estudiada per G. H. Hardy en relació amb un problema d'aproximació diofàntina. Aquest treball va ser estudiat per Tirukkannapuram Vijayaraghavan (1902-1955), un matemàtic indi de la regió de Madras que va anar a Oxford per a treballar amb Hardy a meitat dels anys 20’s. Aquesta mateixa condició apareix també a certs problemes sobre les sèries de Fourier i va ser estudiat més tard per Charles Pisot. El nom, format per aquests dos autors, es fa servir actualment de forma generalitzada.

Els nombres de Pisot-Vijayaraghavan poden ser utilitzats per a generar nombres quasi enters: la n-èsima potència d'un nombre de Pisot tendeix a un enter quan n tendeix a l'infinit. Per exemple,

  • \varphi^{21} = 24~476,000~040~9
  • \varphi^{22} = 39~602,999~974~7
  • \varphi^{23} = 64~079,000~015~6

Aquest efecte és més pronunciat en les nombres de Pisot-Vijayaraghavan engendrats a partir d'equacions de grau més alt.

Aquesta propietat prové del fet que per a cada n, la suma de les n-èsimes potències d'un enter algebraic x i dels seus conjugats és exactament un enter; quan x és un nombre de Pisot, les n-èsimes potències dels (altres) conjuguats tendeixen vers 0 quan n tendeix vers l'infinit.

El nombre de Pisot-Vijayaraghavan més petit, conegut amb el nom de nombre plàstic ou nombre de plata, és l'única arrel real del polinomi x^3 - x - 1 (aproximadament 1,324717957 ...). Aquest nombre va ser identificat com el més petit per Raphaël Salem el 1944 i Carl Ludwig Siegel va demostrar que era el menor possible el mateix any. Siegel també va identificar el segon nombre de Pisot més petit com l’arrel positiva de  x^4-x^3 - 1 (aproximadament 1,38027756 ...).


Llista de nombres de Pisot[modifica | modifica el codi]

Nombres de Pisot inferiors a 1,618 en ordre creixent.

Valor Arrel de...
1 1,3247179572447460260 x^3-x-1\,
2 1,3802775690976141157 x^4-x^3-1\,
3 1,4432687912703731076 x^5-x^4-x^3+x^2-1\,
4 1,4655712318767680267 x^3-x^2-1\,
5 1,5015948035390873664 x^6-x^5-x^4+x^2-1\,
6 1,5341577449142669154 x^5-x^3-x^2-x-1\,
7 1,5452156497327552432 x^7-x^6-x^5+x^2-1\,
8 1,5617520677202972947 x^6-2x^5+x^4-x^2+x-1\,
9 1,5701473121960543629 x^5-x^4-x^2-1\,
10 1,5736789683935169887 x^8-x^7-x^6+x^2-1\,
11 1,5900053739013639252 x^7-x^5-x^4-x^3-x^2-x-1\,
12 1,5911843056671025063 x^9-x^8-x^7+x^2-1\,
13 1,6013473337876367242 x^7-x^6-x^4-x^2-1\,
14 1,6017558616969832557 x^{10}-x^9-x^8+x^2-1\,
15 1,6079827279282011499 x^9-x^7-x^6-x^5-x^4-x^3-x^2-x-1\,
16 1,6081283851873869594 x^{11}-x^{10}-x^9+x^2-1\,
17 1,6119303965641198198 x^9-x^8-x^6-x^4-x^2-1\,
18 1,6119834212464921559 x^{12}-x^{11}-x^{10}+x^2-1\,
19 1,6143068232571485146 x^{11}-x^9-x^8-x^7-x^6-x^5-x^4-x^3-x^2-x-1\,
20 1,6143264149391271041 x^{13}-x^{12}-x^{11}+x^2-1\,
21 1,6157492027552106107 x^{11}-x^{10}-x^8-x^6-x^4-x^2-1\,
22 1,6157565175408433755 x^{14}-x^{13}-x^{12}+x^2-1\,
23 1,6166296843945727036 x^{13}-x^{11}-x^{10}-x^9-x^8-x^7-x^6-x^5-x^4-x^3-x^2-x-1\,
24 1,6166324353879050082 x^{15}-x^{14}-x^{13}+x^2-1\,
25 1,6171692963550925635 x^{13}-x^{12}-x^{10}-x^8-x^6-x^4-x^2-1\,
26 1,6171703361720168476 x^{16}-x^{15}-x^{14}+x^2-1\,
27 1,6175009054313240144 x^{15}-x^{13}-x^{12}-x^{11}-x^{10}-x^9-x^8-x^7-x^6-x^5-x^4-x^3-x^2-x-1\,
28 1,6175012998129095573 x^{17}-x^{16}-x^{15}+x^2-1\,
29 1,6177050699575566445 x^{15}-x^{14}-x^{12}-x^{10}-x^8-x^6-x^4-x^2-1\,
30 1,6177052198884550971 x^{18}-x^{17}-x^{16}+x^2-1\,
31 1,6178309287889738637 x^{17}-x^{15}-x^{14}-x^{13}-x^{12}-x^{11}-x^{10}-x^9-x^8-x^7-x^6-x^5-x^4-x^3-x^2-x-1\,
32 1,6178309858778122988 x^{19}-x^{18}-x^{17}+x^2-1\,
33 1,6179085817671650120 x^{17}-x^{16}-x^{14}-x^{12}-x^{10}-x^8-x^6-x^4-x^2-1\,
34 1,6179086035278053858 x^{20}-x^{19}-x^{18}+x^2-1\,
35 1,6179565199535642392 x^{19}-x^{17}-x^{16}-x^{15}-x^{14}-x^{13}-x^{12}-x^{11}-x^{10}-x^9-x^8-x^7-x^6-x^5-x^4-x^3-x^2-x-1\,
36 1,6179565282539765702 x^{21}-x^{20}-x^{19}+x^2-1\,
37 1,6179861253852491516 x^{19}-x^{18}-x^{16}-x^{14}-x^{12}-x^{10}-x^8-x^6-x^4-x^2-1\,
38 1,6179861285528618287 x^{22}-x^{21}-x^{20}+x^2-1\,

Bibliografia[modifica | modifica el codi]

Enllaços externs[modifica | modifica el codi]