Principi d'incertesa de Heisenberg

De Viquipèdia
Dreceres ràpides: navegació, cerca
Gràfic del Principi d'incertesa de Heisenberg.

El Principi d'incertesa de Heisenberg o principi d'indeterminació de Heisenberg postula que no es pot saber, alhora i amb total precisió, el valor de certs objectes observables, com per exemple la posició i el moment d'una partícula. El principi d'incertesa és un dels principis més importants de la mecànica quàntica i va ser formulat per Werner Heisenberg el 1927. Segons Heisenberg, no és possible precisar la posició d'una partícula quàntica, ja que aquestes "no tenen una extensió fixa" [1] i, per tant, "no són pas corpuscles localitzats" [2] i no té sentit parlar de quina és la seva posició.

En qualsevol mesura que fem sempre s'associa un error experimental. Aquest error és degut al fet que s'empra un aparell de mesura i que per tant aquest no és "perfecte". Per exemple, si es vol mesurar la llargada d'una taula es pot fer fer servir un regle. A aquesta mesura se li assigna un error d'un mil·límetre (si aquest està graduat en mil·límetres) donat que és l'error mínim que es pot fer en mesurar la llargada de la taula amb aquest aparell. Si es vol incrementar la precisió en la mesura es pot fer servir un regle més precís. No obstant continuarà encara associada a la mesura un cert error.

Suposem ara que es disposa d'un conjunt de taules idèntiques entre elles i que se'n mesura la llargada. Si es dibuixa la freqüència de les mesures fetes, seguiran una certa distribució. Aquesta distribució segueix una distribució gaussiana caracteritzada per un valor mitjà, que correspon a la llargada de la taula, i una desviació estàndard, que mesura la dispersió de les diverses mesures respecte del valor mitjà (és una manera d'avaluar l'error fet en les mesures).

Formulació del principi d'incertesa[modifica | modifica el codi]

El principi d'incertesa estableix la relació entre les desviacions estàndard dels objectes observables (o més intuïtivament, dels errors en mesurar els objectes observables). Segons aquest, per dues variables conjugades amb desviacions estàndard Δ1 i Δ2 respectivament, no podrem reduir Δ1 més enllà d'un límit sense incrementar Δ2 i viceversa. Exemples de variables conjugades són el moment i la posició, i l'energia i el temps de les partícules.

Per exemple, si es preparen diverses còpies d'un sistema en un estat quàntic determinat i després mesurem la posició i el moment d'aquestes còpies, llavors els valors d'aquestes variaran d'acord a l'anomenada distribució de probabilitat. Les mesures de l'objecte observable tindran desviació estàndard Δx de la posició i el moment Δp. El principi d'incertesa dóna una relació entre aquestes dues i matemàticament s'expressa com:

\Delta x \cdot \Delta p \ge \frac{\hbar}{2}

on \hbar és la Constant de Planck reduïda o Constant de Dirac (\frac{h}{2\pi}). No es pot disminuir indefinidament Δx sense incrementar necessàriament Δp i viceversa.

A la mecànica quàntica aquest és un postulat fonamental i no es refereix únicament a l'error que es produeix en mesurar, sinó a un error intrínsec que no es pot superar. Per l'energia i el temps es té:

\Delta x \cdot \Delta p \ge \frac{\hbar}{2}

Inicis de la mecànica quàntica i el principi d'incertesa[modifica | modifica el codi]

A principis del segle XX la física va conèixer dues grans revolucions; una amb el naixement de la teoria de la relativitat i l'altra amb el naixement de la mecànica quàntica. Un fet que va marcar la mecànica quàntica, a diferència de la teoria de la relativitat, formulada bàsicament per Albert Einstein, és que va tenir moltes contribucions importants de diferents físics, entre ells el mateix Albert Einstein. Això va fer que en sorgissin una sèrie d'interpretacions diferents. La més acceptada comunament és la interpretació de Copenhaguen, formulada entre d'altres per Niels Bohr i Werner Heisenberg. Aquesta interpretació creu en la veracitat del principi d'incertesa de Heisenberg.

Altres físics molt importants, com Albert Einstein, Erwin Schrödinger o Louis de Broglie, pensaven diferent i malgrat haver fet moltes i importants aportacions a la mecànica quàntica, avui formulada segons la interpretació de Copenhaguen, no hi estaven d'acord. Un exemple d'això és el famós article Einstein-Podolsky-Rosen, conegut com a paradoxa EPR, on es qüestiona que la mecànica quàntica sigui una teoria completa i refuten, per tant, el principi d'incertesa.

En aquest marc, on els millors físics del segle XX es van involucrar en un cantó o l'altre, Einstein i Bohr van mantenir un debat molt important, on els anomenats gedanke Experimente (experiments mentals) van jugar un rol molt important. Aquests experiments mentals intentaven refutar, arribant a absurds o paradoxes, o donar suport a la mecànica quàntica. És en aquest context que Einstein va dir la seva famosa frase: "no crec que Déu decidís jugar als daus amb l'univers". La rèplica de Bohr va ser: "Einstein, no li diguis a Déu el que ha de fer".

Intents de refutar el principi d'incertesa[modifica | modifica el codi]

Amb el temps, el debat sobre la mecànica quàntica va anar perdent intensitat, malgrat que, en certa manera, encara és vigent. Una aproximació diferent, per mirar de superar la visió no determinista de la mecànica quàntica tradicional, és la inclusió de variables ocultes. Una teoria d'aquest estil proposa afegir una sèrie de variables, fins ara no mesurables, i que faria que la mecànica quàntica actual fos només una visió estadística d'una teoria més completa. Sembla clar que fins i tot una teoria de variables ocultes ha d'incloure la no localitat observada a la mecànica quàntica. El físic John von Neumann va creure demostrar amb un teorema que una teoria de variables ocultes no era possible si aquesta havia de reproduir els resultats, realment excel·lents, de la mecànica quàntica. Més tard es va veure que el teorema només descarta un tipus determinat de teoria de variables ocultes.

Una exemple de teoria de variables ocultes, no local però determinista, és la desenvolupada per David Bohm el 1952. Aquesta és coneguda com a mecànica de Bohm i es basa en una reinterpretació de l'equació de Schrödinger en l'equació de Hamilton-Hacobi, ja coneguda a la mecànica clàssica, i que inclou la idea ja formulada per de Broglie de les ones pilot.

En conclusió, es pot dir que, si bé el principi d'incertesa va en contra de l'experiència quotidiana i que alguns físics han mirat de trobar una teoria que la substitueixi, no s'ha trobat cap experiment que el refuti definitivament. També és cert que no s'ha demostrat definitivament la impossibilitat d'una teoria de variables ocultes (tot i que sí que han estat descartades algunes de les possibles teories).

Bibliografia[modifica | modifica el codi]

  1. Lévy-Leblond J-M. Conceptos contrarios o el oficio del científico. Barcelona: Tusquets editores, 2002, pàg. 169
  2. Lévy-Leblond JM. Dictionnaire d'histoire et philosophie des sciences, Ch. Quantique, PUF, pp. 785-789, 1999.

Enllaços externs[modifica | modifica el codi]