Seqüenciació d'ADN

De Viquipèdia
Dreceres ràpides: navegació, cerca

La seqüenciació d'ADN és cadascun dels mètodes de laboratori que tenen per objectiu determinar l'ordre dels nucleòtids adenina, guanina, citosina, i timina en un fragment d'ADN. El coneixement de les seqüències d'ADN ha esdevingut indispensable per a la recerca biològica bàsica, per a altres branques de recerca que utilitzen la seqüenciació d'ADN, i per a nombrosos camps aplicats com el diagnòstic, la biotecnològica, la biologia forense i la sistemàtica biològica. L'arribada de la seqüenciació d'ADN ha accelerat significativament la recerca biològica. La rapidesa de la seqüenciació assolida amb la tecnologia de seqüenciació d'ADN moderna ha sigut fonamental per a la seqüenciació del genoma humà, en el Projecte Genoma Humà. Projectes relacionats, sovint col·laboracions científiques entre els continents, han generat seqüències d'ADN completes de molts genomes animals, de plantes, i de microbis.

Les primeres seqüències d'ADN van ser obtingudes a principis de la dècada del 1970 per investigadors acadèmics utilitzant mètodes laboriosos basats en cromatografies bidimensionals. Gràcies al desenvolupament de mètodes de seqüenciació basats en la cianina,[1] la seqüenciació d'ADN va esdevenir més senzilla i ordres de magnitud més ràpida.

Mètode de Sanger[modifica | modifica el codi]

El mètode de Sanger rep el nom del seu desenvolupador Frederick Sanger i fou publicat per primer cop en un article sobre la seqüenciació d'un fragment de 50 nucleòtids d'ADN del fag fl emprant ADN polimerasa d’E.coli. L'article és signat per diversos col·laboradors del Medical Research Council Laboratory of Molecular Biology de Cambridge i de l'Institut für Biologie III, de la Universitat de Freiburg.[2]

El mètode de Sanger es basava, a diferència del de Maxam i Gilbert[3] desenvolupat pocs anys més tard, en la síntesi emprant enzims propis de la replicació de l'ADN. En aquells moments degut a la dificultat que suposava obtenir i purificar ADN polimerases i la gran quantitat que es necessitava per a seqüenciar fragments fou desplaçat pel mètode de Maxam-Gilbert, però amb l'aparició de la tècnica de reacció en cadena de la polimerasa ha desplaçat aquest i pràcticament la immensa majoria de seqüències d'ADN s'obtenen amb variacions del mètode de Sanger que impliquen l'ús de termocicladors.

Mètodes terminació de cadena[modifica | modifica el codi]

Radiografia d'un gel de seqüenciació marcat radioactivament. Fixeu-vos amb els quatre carrils que corresponen amb cadascuna de les reaccions. En cada carril s'han revelat diversos fragments de longitud variable en funció dels punts on, per complementarietat de bases, l'ADN polimerasa ha incorporat un ddNTP. La resolució dels gels de poliacrilamida amb un diàmetre de porus realment petit, permet diferenciar fragments amb pesos moleculars d'un sòl nucleòtid. Tenint en compte un avanç d'electroforesi de dalt cap a baix en la imatge, la seqüència que s'obtindria per als deu primers nucleòtids seria "TCGTTATCTT". Noteu la dificultat que pot presentar la lectura de dues bandes corresponents a posicions consecutives.

Com que el mètode de terminació de cadena és més eficient i utilitza menys productes químics tòxics i quantitats més baixes de radioactivitat que el mètode de Maxam i Gilbert, es va convertir ràpidament en el mètode d'elecció. El principi fonamental del mètode Sanger va ser l'ús de didesoxinucleòtids trifosfats (ddNTPs) com a terminadors de la síntesi de la cadena complementària d'ADN. Els didesoxinucleòtids són essencialment desoxinucleòtids, els “pilars” de l'ADN, als quals manca el grup hidroxil en el seu extrem 3', pel que l'elongació que efectua l'ADN polimerasa formant un enllaç fosfodièster és impossible.

El mètode original de terminació de cadena requereix un cadena "mare" d'ADN de cadena simple, un encebador d'ADN, una ADN polimerasa, els nucleòtids (A, T, C i G) i desoxinucleòtids marcats, que finalitzen l'elongació d'ADN radioactivament o amb fluorocroms, grups químics que emeten fluorescència a una determinada longitud d'ona. La mostra d'ADN es divideix en quatre reaccions de seqüenciació independents, que conté els quatre desoxinucleòtids (dATP, dGTP, dCTP i dTTP) i l'ADN polimerasa. Per a cada reacció s'afegeix només un dels quatre didesoxinucleòtids o terminadors (ddATP, ddGTP, ddCTP o ddTTP), que són els nucleòtids de terminació de cadena, que no tenen un grup hidroxil en la posició 3' necessari per a la formació d'un enllaç fosfodièster entre dos nucleòtids, de manera que finalitzaran l'elongació de la cadena d'ADN donant lloc a fragments d'ADN de longitud variable. La tècnica es fonamenta en que la polimerasa és "incapaç" de diferenciar els desoxinucleòtids dels didesoxinucleòtids a l'hora d'incorporar-los a la cadena que està sintetitzant, pel que aquests són incorporats de forma "aleatòria", és a dir si s'ha d'incorporar adenina en una posició determinada per la complementarietat l'ADN pol pot incorporar dATP o ddATP nomé

El resultat de la reacció es desnaturalitza aplicant escalfor, i separats per mida (amb una resolució d'un sol nucleòtid) mitjançant electroforesi en gel de poliacrilamida-urea amb presència d'agents desnaturalitzants amb cadascuna de les quatre reaccions s'executen en un dels quatre carrils individuals (línies A, T, G, C), les “bandes” d'ADN es visualitzen o revelen mitjançant autoradiografia o amb llum UV, i la seqüència d'ADN es pot “llegir” directament de la pel·lícula de raigs X o la imatge del gel. A la imatge de la dreta, pel·lícula de raigs X exposada al gel, i les bandes fosques corresponen a fragments d'ADN de diferents longituds. Una banda fosca en un carril és deguda a la presència d'un fragment d'ADN d'un mateix pes molecular que és el resultat de la terminació de la cadena després de la incorporació d'un didesoxinucleòtids (ddATP, ddGTP, ddCTP o ddTTP). Les posicions relatives de les diferents bandes entre els quatre carrils s'utilitzen per llegir (de baix a dalt) la seqüència d'ADN, ja que l'electroforesi ha separat de menor a major pes molecular els diferents fragments sintetitzats per la polimerasa.

Comparativa dels mètodes de marcatge en la seqüenciació amb terminadors de cadena. A dalt, marcatge dels encebadors. Al mig, marcatge dels dNTPs. A baix, marcatge dels terminadors ddNTP.

Hi ha variacions tècniques en la manera de marcar els nucleòtids amb fòsfor radioactiu, o l'ús d'encebadors marcats a l'extrem 5' amb un marcador fluorescent. El marcatge dels encebadors facilita la lectura en un sistema òptic i fa l'anàlisi més ràpida i econòmica i en permet l'automatització. El posterior desenvolupament de Leroy Hood i els seus col·laboradors de ddNTPs marcats fluorescentment establí les bases per a la seqüenciació automatitzada d'ADN d'alt rendiment.[4] [5]

Els mètodes de terminació de cadena han simplificat enormement la seqüenciació de l'ADN. Per exemple, s'han comercialitzats kits de terminació de cadena llestos per usar que contenen els reactius necessaris per a la seqüenciació, pre-alíquotes. Les limitacions inclouen la unió no específica de la cartilla de l'ADN, que afecten necessita lectura de la seqüència d'ADN, i les estructures secundàries de l'ADN que afecten a la fidelitat de la seqüència.

Seqüenciació amb ddNTPs marcats (Dye terminator)[modifica | modifica el codi]

Comparativa entre la lectura d'un gel de quatre carrils amb marcadors radioactius i el cromatograma obtingut amb marcadors fluorescents.

La seqüenciació amb terminadors marcats utilitza el marcatge dels ddNTPs, el que permet la seqüenciació en una sola reacció, en lloc de les quatre reaccions per separat com en el mètode de marcat d'encebadors. En la seqüència de terminadors marcats, cadascun dels quatre didesoxinucleòtids està marcat amb grups químics fluorescents, cadascun dels quals emeten llum en longituds d'ona diferents. Per la rapidesa en realitzar la reacció i la seva lectura, la seqüència de terminadors marcats és el pilar en la seqüenciació automatitzada.

Les seves limitacions inclouen efectes del marcador a causa de les diferències en la incorporació dels terminadors marcats en el fragment d'ADN, donant com a resultat pics desiguals en l'alçada i forma dels cromatogrames obtinguts en la interpretació de la cromatografia després de l'electroforesi capil·lar. Aquest problema s'ha corregit amb l'ús dels sistemes amb ADN polimerases i marcadors modificats que minimitzen la variabilitat. El mètode de seqüenciació de terminadors marcats, juntament amb analitzadors automàtics de seqüència d'ADN d'alt rendiment, s'està utilitzant per a la gran majoria dels projectes de seqüenciació.

Dificultats[modifica | modifica el codi]

Esquema representant l'obtenció de la seqüència mitjançant l'electroforesi capil·lar i l'anàlisi automatitzada

Les dificultats comunes de la seqüència de l'ADN són la mala qualitat en els primers 15-40 bases de la seqüència i el deteriorament de la qualitat de la seqüenciació d'empremtes a partir de les 700-900 bases. programari de base anomenada normalment dóna una estimació de la qualitat per ajudar en la qualitat de tall.

En els casos en què els fragments d'ADN es clonen abans de seqüenciar, la seqüència resultant pot contenir parts del vector de clonació. En canvi, la clonació basada en la reacció en cadena de la polimerasa i tecnologies emergents de seqüenciació obtinguda a partir de piroseqüenciació sovint eviten l'ús de vectors de clonació. Recentment, la seqüenciació de Sanger d'un sol pas (amplificació i seqüenciació combinada) de mètodes com ara Ampliseq™ i SeqSharp™ han estat desenvolupades per permetre una ràpida seqüenciació de gens diana sense clonació o amplificació prèvia.[6][7]

Els mètodes actuals poden directament única seqüència d'ADN relativament curta (300-1000 nucleòtids de longitud) de fragments en una sola reacció. El principal obstacle per a la seqüenciació de fragments d'ADN per sobre d'aquest límit de mida és el poder de la separació insuficient per resoldre els grans fragments d'ADN que difereixen en longitud per un sol nucleòtid.

Imatge d'un cromatograma típic. Cadascuna de les corbes de color representa la reacció envers un determinat nucleòtid. Noteu que a partir de les posicions 10-30 s'homogeneïtzen les mides i alçades de les corbes.

Automatització i preparació de mostres[modifica | modifica el codi]

Els instruments de seqüenciació automatitzada d'ADN (seqüenciadors d'ADN) poden seqüenciar fins a 384 mostres d'ADN en un sol lot (batch) en un màxim de 24 carreres al dia. Els seqüenciadors d'ADN duean terme l'electroforesi capil·lar per a la separació segons la mida, la detecció i registre de la fluorescència del fluorocrom, i la sortida de dades en forma de cromatogrames. Les reaccions de seqüenciació en termocicladors, la neteja i resuspensió en una solució tampó abans de carregar al seqüenciador es realitzen per separat. Una sèrie de paquets de programari comercial i no comercial pot retallar rastres d'ADN de baixa qualitat de forma automàtica. Aquests programes puntuen la qualitat de cada pic i eliminen els pics de la base de baixa qualitat (generalment situats en els extrems de la seqüència). La precisió d'aquest tipus d'algorismes és inferior a un examen visual per un operador humà, però suficient per al processament automatitzat de grans conjunts de dades de la seqüència.

Referències[modifica | modifica el codi]

  1. Olsvik O, Wahlberg J, Petterson B, et al.. «Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains». J. Clin. Microbiol., vol. 31, 1, January 1993, pàg. 22–5. PMC: 262614. PMID: 7678018.
  2. SANGER, F.. «Use of DNA Polymerase I Primed by a Synthetic Oligonucleotide to Determine a Nucleotide Sequence in Phage fl DNA» (en anglès). Proceedings of the National Academy of Science of the United States of America, Vol. 70, No. 4, Abril 1973, pp. 1209-1213 [Consulta: 6 novembre 2010].
  3. Maxam, Allan M.. «A new method for sequencing DNA» (en anglès). Proc. Natl. Acad. Sci. USA., Vol. 74, Núm. 2, Febrer de 1977, pàgs. 560-4 [Consulta: 6 novembre 2010].
  4. Smith LM, Sanders JZ, Kaiser RJ, et al. «Fluorescence detection in automated DNA sequence analysis». Nature, vol. 321, 6071, 1986, pàg. 674–9. DOI: 10.1038/321674a0. PMID: 3713851. «We have developed a method for the partial automation of DNA sequence analysis. Fluorescence detection of the DNA fragments is accomplished by means of a fluorophore covalently attached to the oligonucleotide primer used in enzymatic DNA sequence analysis. A different coloured fluorophore is used for each of the reactions specific for the bases A, C, G and T. The reaction mixtures are combined and co-electrophoresed down a single polyacrylamide gel tube, the separated fluorescent bands of DNA are detected near the bottom of the tube, and the sequence information is acquired directly by computer.»
  5. Smith LM, Fung S, Hunkapiller MW, Hunkapiller TJ, Hood LE. «The synthesis of oligonucleotides containing an aliphatic amino group at the 5' terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis». Nucleic Acids Res., vol. 13, 7, April 1985, pàg. 2399–412. DOI: 10.1093/nar/13.7.2399. PMC: 341163. PMID: 4000959.
  6. doi:10.1373/clinchem.2004.039164
  7. doi:10.2353/jmoldx.2010.090134