Betelgeuse

De Viquipèdia
Jump to navigation Jump to search
Infotaula d'estrellaBetelgeuse
Position Alpha Ori.png
Nomenclatura
Bayer α Orionis
Flamsteed 58 Orionis
Altres HR 2061, HD 39801
Dades d'observació
Època J2000
Constel·lació Orió
Ascensió recta (α) 05h 55m 10,29s
Declinació (δ) +07° 24′ 25.3″
Magnitud aparent (V) +0.45m
Variabilitat SR c
Característiques astromètriques
Distància a la Terra 427 ± 92 a.ll. 131 pc 200 parsecs
Magnitud absoluta -5,2m
Paral·laxi
Part de Orió
Característiques físiques
Tipus espectral M1-2 Ia-Iab
Lluminositat 10.000 LS
Radi 650 RS
Massa 15 MS
Temperatura superficial 3.600 K
Edat
Període de rotació
Velocitat de rotació 5 km/s
Més informació
Codi de catàleg
Modifica les dades a Wikidata

Betelgeuse, anomenada també alfa d'Orió (α Orionis, abreviat Alpha Ori o α Ori), és una gran estrella vermella a la constel·lació d'Orió, la segona més brillant. És la novena estrella més brillant del cel, una supergegant vermella semiregular variable amb una magnitud aparent entre 0,0 i 1,3, el rang més ampli de qualsevol estrella de primera magnitud, i és un dels vèrtexs del triangle hivernal que a més marca el seu centre. Marca l'espatlla dreta del gegant mitològic Orió (el caçador), encara que des de la Terra es veu a l'esquerra i a la part superior de la constel·lació, dominant el cel hivernal. La seva proximitat (427 anys-llum), combinada amb la seva grandària, fan que sigui una de les poques estrelles de les quals es pot obtenir una imatge del seu disc (vegeu la imatge a la part inferior). Seria l'estrella més brillant del cel nocturn si l'ull humà pogués veure totes les longituds d'ona de la radiació.

El nom és una corrupció de l'àrab يد الجوزا, yad al-jawzā, o "la mà de qui està al centre", que durant l'edat mitjana i el Renaixement, en les traduccions al llatí, es convertí en Betelgeuse.

Es tracta d'una supergegant vermella de tipus espectral M1-2 i és una de les estrelles més grans visibles a ull nu. Si Betelgeuse fos al centre del sistema solar, la seva superfície s'estendria més enllà del cinturó d'asteroides, envoltant completament les òrbites de Mercuri, Venus, la Terra, Mart, i possiblement Júpiter. No obstant això, hi ha altres supergegants vermelles a la Via Làctica que podrien ser més grans, com ara Mu Cephei, VV Cephei A, i VY Canis Majoris. Els càlculs de la seva gamma de masses lleugerament inferiors a deu o una mica més de vint vegades superior a la del sol. Es calcula que és a 640 anys llum, produint una magnitud absoluta de −6. Amb menys de 10 milions d'anys de vida, Betelgeuse ha evolucionat ràpidament per la seva alta massa. Havent estat expulsat del seu lloc de naixement de l'associació estel·lar OB1 d'Orió—que inclou les estrelles del cinturó d'Orió—aquesta estrella fugitiva s'ha observat que es mou a través del medi interestel·lar a una velocitat de 30 km/s, creant un xoc en arc de més de quatre anys llum d'amplada. Actualment en una fase final de l'evolució estel·lar, es preveu que la supergegant exploti com una supernova en els propers milions d'anys.

En 1920, Betelgeuse es va convertir en la primera estrella extrasolar en tenir la mida angular de la seva fotosfera mesurada. Diversos estudis posteriors coincideixen en un diàmetre angular (mida aparent) que van des de 0,042 a 0,056 segons d'arc, amb les diferències atribuïdes a la no esfericitat, enfosquiment vers el limbe, pulsacions, i una aparença diferent en diverses longituds d'ona. També està envoltat per un sobre complex i asimètric aproximadament 250 vegades la mida de l'estrella, causada per la pèrdua de massa de l'estrella mateixa. El diàmetre angular de Betelgeuse només queda superat per R Doradus (i el sol).

Característiques[modifica]

Betelgeuse és de gran interés astronòmic. Va ser una de les primeres estrelles de les quals es va poder mesurar el seu diàmetre per mètodes interferomètrics i es va trobar que el diàmetre era variable, entre 290.000.000 km i 480.000.000 km. En el màxim diàmetre, l'estrella s'estendria més enllà de l'òrbita de Mart si ocupés el lloc del Sol. Betelgeuse, a més, és una variable semiregular, de tipus SRc

Els astrònoms prediuen que Belegeuse patirà una supernova de tipus II. Les opinions sobre quan tindrà lloc aquest fet són variables. Alguns consideren que la variabilitat de l'estel és provocada pel fet que l'estel està en la fase de cremar carboni, i que per tant la supernova es produirà en els mil anys vinents aproximadament. Altres creuen que encara li queda molta vida, però existeix consens en considerar que una supernova serà un esdeveniment astronòmic espectacular, però no serà cap amenaça pel Sistema Solar, donada la immensa distància que ens separa. Durant la supernova Betelgeuse brillaria 10.000 vegades més, amb una llum comparable a la de la Lluna creixent (alguns prediuen una magnitud aparent igual a la de la Lluna plena), que duraria alguns mesos. Es veuria com un punt brillant, amb la lluminositat de la Lluna i el color d'una bombeta d'incandescència, visible de dia.

Posició de Betelguese a Orió
Betelgeuse

Nomenclatura[modifica]

α Orionis (llatinitzat a Alpha Orionis) és la nomenclatura de Bayer de l'estrella. El nom tradicional Betelgeuse es deriva de la llengua àrab إبط الجوزاء Ibṭ al-Jauzā’, que significa "l'axil·la d'Orió", o يد الجوزاء Yad al-Jauzā’, que significa "la mà d'Orió" (vegeu més avall). El 2016, la Unió Astronòmica Internacional va organitzar un grup de treball sobre noms d'estrelles (WGSN)[1] per catalogar i estandarditzar noms propis per a les estrelles. El primer butlletí de WGSN de juliol de 2016[2] que va incloure una taula dels dos primers lots de noms aprovats per la WGSN, que van incloure Betelgeuse per a aquesta estrella. Ara està introduït al catàleg de noms d'estrelles de la UAI.[3]

Història observacional[modifica]

Betelgeuse i la seva coloració vermella s'ha observat des de l'antiguitat; l'astrònom clàssic Ptolemeu va descriure el seu color com a ὑπόκιρρος (hypókirrhos), terme que posteriorment va ser descrit per un traductor de Zij-i Sultani de Ulugh Beg com a rubedo, que del llatí significa "rubicund".[4][5] Al segle XIX, abans dels sistemes moderns de classificacions estel·lars, Angelo Secchi incloïa Betelgeuse com un dels prototips per a les seves estrelles de classe III (taronja a vermell).[6] Per contra, tres segles abans de Ptolemeu, els astrònoms xinesos van observar que Betelgeuse tenia una coloració groga; si és precís, aquesta observació podria suggerir que l'estrella estigués en una fase de supergegant groga al voltant de l'inici de l'era cristiana,[7] una possibilitat donada la recerca actual sobre el complex entorn circumestel·lar d'aquestes estrelles.[8]

Descobriments nacents[modifica]

La variació en la brillantor de Betelgeuse va ser descrita per primera vegada el 1836 per John Herschel, quan va publicar les seves observacions en Outlines of Astronomy. De 1836 a 1840, va notar canvis significatius de magnitud quan Betelgeuse va quedar fora de Rigel a l'octubre de 1837 i altre cop al novembre de 1839.[9] Es va seguir un període de deu anys de descans; llavors, el 1849, Herschel va assenyalar un altre cicle curt de variabilitat, que va arribar al seu punt màxim el 1852. Els observadors posteriors van registrar inusualment màximes elevades amb un interval d'anys, però només petites variacions de 1957 a 1967. Els registres de l'Associació Americana d'Observadors d'Estrelles Variables (AAVSO) mostren una brillantor màxima de 0,2 en 1933 i 1942, i un mínim de 1,2, observat en 1927 i 1941.[10][11] Aquesta variabilitat en la brillantor pot explicar per què Johann Bayer, amb la publicació de la seva Uranometria en 1603, va designar l'estrella alpha ja que probablement rivalitzava amb el que normalment més brillant Rigel (beta).[12] Des de les latituds àrtiques, el color vermell de Betelgeuse i la seva ubicació més alta al cel que Rigel va significar que els Inuit la consideraven més brillant, i tenia el nom local de Ulluriajjuaq "gran estrella".[13]

El 1920, Albert Michelson i Francis Pease van muntar un interferòmetre de 6 metres sobre un telescopi de 2,5 metres a l'Observatori de Mount Wilson. Ajudats per John Anderson, van mesurar el diàmetre angular de Betelgeuse a 0,047", una xifra que va donar lloc a un diàmetre de 3,84 × 108 km (2,58 UA) basat en un valor de paral·laxi de 0,018".[14] Tanmateix, els efectes d'enfosquiment i mesurament van donar lloc a una incertesa sobre la precisió d'aquestes mesures.

Els anys cinquanta i seixanta van veure dos esdeveniments que podrien afectar la teoria de convecció estel·lar en supergegants vermelles: els projectes Stratoscope i la publicació en 1958 de Structure and Evolution of the Stars, principalment el treball de Martin Schwarzschild i el seu company a la Universitat de Princeton, Richard Härm.[15][16] Aquest llibre va difondre idees sobre com aplicar tecnologies informàtiques per crear models estel·lars, mentre que els projectes Stratoscope, mitjançant telescopis amb globus per sobre de la turbulència de la Terra, van produir algunes de les millors imatges de grànuls i taques solars mai vistes, confirmant així l'existència de convecció a l'atmosfera solar.[15]

Avenços d'imatges[modifica]

Imatges UV del HST el 1988/9 de Betelgeuse mostrant pulsacions asimètriques amb els corresponents perfils de línia espectral

Els astrònoms de la dècada de 1970 van experimentar alguns avanços importants en la tecnologia d'imatges astronòmiques amb l'invenció de l'interferometria de clapejat per part d'Antoine Labeyrie, un procés que va reduir significativament l'efecte borrós causat per la visió astronòmica. Va augmentar la resolució òptica dels telescopis terrestres, permetent mesures més precises de la fotosfera de Betelgeuse.[17][18] Amb millores en el telescopi infraroig de Mount Wilson, Mount Locke i Mauna Kea a Hawaii, els astrofísics van començar a mirar cap a les complexes closques circumestel·lars que envoltaven la supergegant,[19][20][21] fent que sospitessin de la presència d'enormes bombolles de gas resultants de la convecció.[22] Però no va ser fins a finals de la dècada de 1980 i principis de la dècada de 1990, quan Betelgeuse es va convertir en un objectiu habitual d'interferometria amb màscara d'obertura, malgrat els avenços que es van produir amb la fotografia de llum visible i infraroja. Per primer cop John E. Baldwin i companys del Grup d'Astrofísica Cavendish, la nova tècnica va emprar una petita màscara amb diversos forats en el pla de la pupil·la del telescopi, convertint l'obertura en una matriu interferomètrica ad-hoc.[23] La tècnica va aportar algunes de les mesures més precises de Betelgeuse alhora que mostrava punts brillants a la fotosfera de l'estrella.[24][25][26] Aquestes van ser les primeres imatges òptiques i infraroges d'un disc estel·lar que no fos el sol, preses primer per interferòmetres terrestres i posteriorment a partir d'observacions d'alta resolució del telescopi COAST. Els "pegats brillants" o "punts d'interès" observats amb aquests instruments semblava corroborar una teoria exposada per Schwarzschild dècades abans de les cel·lulès de convecció massives dominant la superfície estel·lar.[27][28]

El 1995, la càmera d'objectes febles del Telescopi espacial Hubble va capturar una imatge ultraviolada amb una resolució superior a la obtinguda per interferòmetres terrestres—la primera imatge convencional del telescopi (o "imatge directa" en la terminologia de la NASA) del disc d'una altra estrella.[29] Com que la llum ultraviolada és absorbida per l'atmosfera de la Terra, les observacions en aquestes longituds d'ona són millor realitzades per telescopis espacials.[30] Igual que les imatges anteriors, aquesta imatge contenia un pegat brillant que indicava una regió al quadrant sud-oest 2.000 K més calenta que la superfície estel·lar.[31] Els espectres ultraviolats posteriors realitzats amb l'Espectrògraf de resolució alta Goddard van suggerir que el punt calent era un dels pols de rotació de Betelgeuse. Això donaria a l'eix de rotació una inclinació d'uns 20° a la direcció de la Terra, i un angle de posició del Nord celeste de 55°.[32]

Estudis recents[modifica]

En un estudi publicat al desembre de 2000, es va mesurar el diàmetre de l'estrella amb l'Interferòmetre Espacial Infraroig (ISI) a longituds d'ona de l'infraroig mig produint una estimació enfosquida de les extremitats de 55,2 ± 0,5 mil·lisegons d'arc (mas)—una xifra totalment coherent amb les troballes de Michelson vuitanta anys abans.[14][33] En el moment de la seva publicació, la paral·laxi estimada de la missió Hipparcos va ser de 7,63 ± 1,64 mas, produint un radi estimat per a Betelgeuse de 3,6 UA. Tanmateix, un estudi interferomètric infraroig publicat el 2009 va anunciar que l'estrella s'havia reduït en un 15% des del 1993 a un ritme creixent sense una disminució significativa de magnitud.[34][35] Les observacions posteriors suggereixen que la contracció aparent pot ser deguda a l'activitat de la closca en l'ambient estès de l'estrella.[36]

A més del diàmetre de l'estrella, han sorgit dubtes sobre la complexa dinàmica de l'ambient estès de Betelgeuse. La massa que compon les galàxies és reciclada com les estrelles es formen i destrueixen, i les supergegants vermelles són les principals contribuents, però el procés pel qual es perd la massa continua sent un misteri.[37] Amb els avanços en metodologies interferomètriques, els astrònoms poden estar a punt de resoldre aquest problema. Al juliol de 2009, les imatges publicades per l'Observatori Europeu del Sud, preses pel l'interferòmetre terrestre del Very Large Telescope (VLTI), va mostrar un extens llom de gas que s'estenia 30 UA des de l'estrella fins a l'ambient circumdant.[38] Aquesta expulsió de massa era igual a la distància entre el Sol i Neptú i és un dels múltiples esdeveniments que es produeixen a l'ambient circumdant de Betelgeuse. Els astrònoms han identificat almenys sis closques que envolten Betelgeuse. Resoldre el misteri de la pèrdua massiva en els últims estadis de l'evolució d'una estrella pot revelar els factors que precipiten les morts explosives d'aquests gegants estel·lars.[34]

Visibilitat[modifica]

Imatge que mostra Betelgeuse i les denses nebuloses del complex de núvols moleculars d'Orió (Rogelio Bernal Andreo)

En el cel nocturn, Betelgeuse és fàcil de detectar a ull nu a causa del seu color taronja-vermell distintiu. A l'hemisferi nord, a partir de gener de cada any, es pot veure pujant a l'est just després del capvespre. De mitjans de setembre a mitjans de març (millor a mitjan desembre), és visible a pràcticament totes les regions habitades del món, excepte algunes estacions d'investigació a l'Antàrtida a latituds al sud de 82°. Al maig (latituds moderades del nord) o juny (latituds meridionals), la supergegant vermella es pot veure breument a l'horitzó occidental després del capvespre, que torna a aparèixer alguns mesos més tard a l'horitzó oriental abans de la sortida del sol. En el període intermedi (juny-juliol) és invisible a simple vista (només visible amb un telescopi a la llum del dia), llevat que al voltant del migdia (quan el sol estigui per sota de l'horitzó) a les regions antàrtiques entre latitud 70° i 80° sud.

Betelgeuse és una estrella variable la brillantor de la qual varia entre 0,0 i 1,3. Hi ha períodes en què superarà Procyon per convertir-se en la setena estrella més brillant, i de tant en tant encara més brillant. Quan és feble Betelgeuse pot quedar darrera de Deneb i Mimosa, ambdues lleugerament variables, per ser la vintena estrella més brillant.

Betelgeuse té un índex de color (B–V) de 1,85—una xifra que apunta al seu "enrogiment" avançat. La fotosfera té una atmosfera estesa, que mostra línies fortes d'emissió enlloc d'absorció, un fenomen que es produeix quan una estrella està envoltada per un entorn gasós gruixut (en lloc d'ionitzat). Aquesta atmosfera gasosa ampliada s'ha observat allunyant-se i apropant-se a Betelgeuse, depenent de les fluctuacions de la velocitat radial a la fotosfera. Betelgeuse és la font més propera al infraroig més brillant del cel amb una magnitud en banda J de −2,99.[39] Com a resultat, només un 13% del total d'energia radiant de l'estrella s'emet en forma de llum visible. Si els ulls humans fossin sensibles a la radiació en totes les longituds d'ona, Betelgeuse apareixeria com l'estrella més brillant del cel.[11]

Sistema estel·lar[modifica]

Diversos catàlegs inclouen fins a nou febles companys visuals a Betelgeuse. Estan a distàncies de al voltant d'un a quatre minuts d'arc i tots són més febles que la desena magnitud.[40][41] Betelgeuse generalment es considera una sola estrella aïllada i una estrella fugaç, que actualment no està associada amb cap clúster o regió de formació d'estrelles, encara que el seu lloc de naixement no està clar.[42]

S'han proposat dos companys espectroscòpics a l'estrella vermella supergegant. L'anàlisi de les dades de polarització entre 1968 i 1983 van indicar un company proper amb una òrbita periòdica d'uns 2,1 anys. Utilitzant interferometria de clapejat, l'equip va arribar a la conclusió que el més proper dels dos companys estava situat a 0,06±0,01 " (~9 UA) des de l'estrella principal amb angle de posició (PA) de 273 graus, una òrbita que potencialment la situaria dins de la cromosfera de l'estrella. Es va estimar el company més llunyà a 0,51±0,01 " (~77 UA) amb un PA de 278 graus.[43][44] Els altres estudis no han trobat proves per a aquests companys o han refutat activament la seva existència,[45] però mai s'ha descartat completament la possibilitat que un company proper contribueixi al flux general.[46] L'interferometria d'alta resolució de Betelgeuse i la seva proximitat, molt més enllà de la tecnologia dels anys vuitanta i noranta, no han detectat cap company.[38][47]

Mesures de distància[modifica]

Very Large Array de la NRAO utilitzat per aconseguir l'estimació de distància de Betelgeuse el 2008

Parallax is the apparent change of the position of an object, measured in seconds of arc, caused by the change of position of the observer of that object. As the Earth orbits the Sun, every star is seen to shift by a fraction of an arc second, which measure, combined with the baseline provided by the Earth's orbit gives the distance to that star. Since the first successful parallax measurement by Friedrich Bessel in 1838, astronomers have been puzzled by Betelgeuse's apparent distance. Knowledge of the star's distance improves the accuracy of other stellar parameters, such as luminosity that, when combined with an angular diameter, can be used to calculate the physical radius and effective temperature; luminosity and isotopic abundances can also be used to estimate the stellar age and mass.[48] In 1920, when the first interferometric studies were performed on the star's diameter, the assumed parallax was 0.0180 arcseconds. This equated to a distance of 56 parsecs (pc) or roughly 180 light-years (ly), producing not only an inaccurate radius for the star but every other stellar characteristic. Since then, there has been ongoing work to measure the distance of Betelgeuse, with proposed distances as high as 400 pc or about 1.300 ly.[48]

Before the publication of the Hipparcos Catalogue (1997), there were two conflicting parallax measurements for Betelgeuse. The first, in 1991, gave a parallax of π = 9.8 ± 4.7 mas, yielding a distance of roughly 102 pc or 330 ly.[49] The second was the Hipparcos Input Catalogue (1993) with a trigonometric parallax of π = 5 ± 4 mas, a distance of 200 pc or 650 ly.[50] Given this uncertainty, researchers were adopting a wide range of distance estimates, leading to significant variances in the calculation of the star's attributes.[48]

The results from the Hipparcos mission were released in 1997. The measured parallax of Betelgeuse was π = 7.63 ± 1.64 mas, which equated to a distance of 131 pc or roughly 430 ly, and had a smaller reported error than previous measurements.[51] However, later evaluation of the Hipparcos parallax measurements for variable stars like Betelgeuse found that the uncertainty of these measurements had been underestimated.[52] In 2007, an improved figure of π = 6,55±0,83 was calculated, hence a much tighter error factor yielding a distance of roughly 152±20 pc or 520±73 ly.[53]

In 2008, using the Very Large Array (VLA), produced a radio solution of π = 5,07±1,10 mas, equalling a distance of 197±45 pc or 643±146 ly.[48] As the researcher, Harper, points out: "The revised Hipparcos parallax leads to a larger distance (152±20 pc) than the original; however, the astrometric solution still requires a significant cosmic noise of 2.4 mas. Given these results it is clear that the Hipparcos data still contain systematic errors of unknown origin." Although the radio data also have systematic errors, the Harper solution combines the datasets in the hope of mitigating such errors.[48] An updated result from further observations with ALMA and e-Merlin gives a parallax of 4,51±0,8 mas and a distance of Error in {{val}}: third argument is not negative. pc.[54] Further observations have resulted in a slightly revised parallax of 4,51±0,80.[54]

Although the European Space Agency's current Gaia mission was not expected to produce good results for stars brighter than the approximately V=6 saturation limit of the mission's instruments,[55] actual operation has shown good performance on objects to about magnitude +3. Forced observations of brighter stars mean that final results should be available for all bright stars and a parallax for Betelgeuse will be published an order of magnitude more accurate than currently available.[56]

Variabilitat[modifica]

Corba de llum en banda V de l'Associació Americana d'Observadors d'Estrelles Variables de Betelgeuse (Alpha Orionis) des de desembre de 1988 fins a l'agost de 2002

Betelgeuse is classified as a semiregular variable star, indicating that some periodicity is noticeable in the brightness changes, but amplitudes may vary, cycles may have different lengths, and there may be standstills or periods of irregularity. It is placed in subgroup SRc; these are pulsating red supergiants with amplitudes around one magnitude and periods from tens to hundreds of days.[57]

Betelgeuse typically shows only small brightness changes near to magnitude +0.5, although at its extremes it can become as bright as magnitude 0.0 or as faint as magnitude +1.3. Betelgeuse is listed in the General Catalogue of Variable Stars with a possible period of 2,335 days.[57] More detailed analyses have shown a main period near 400 days and a longer secondary period around 2,100 days.[47][58]

Radial pulsations of red supergiants are well-modelled and show that periods of a few hundred days are typically due to fundamental and first overtone pulsation.[59] Lines in the spectrum of Betelgeuse show doppler shifts indicating radial velocity changes corresponding, very roughly, to the brightness changes. This demonstrates the nature of the pulsations in size, although corresponding temperature and spectral variations are not clearly seen.[60] Variations in the diameter of Betelgeuse have also been measured directly.[36]

The source of the long secondary periods is unknown, but they certainly aren't due to radial pulsations.[58] Interferometric observations of Betelgeuse have shown hotspots that are thought to be created by massive convection cells, a significant fraction of the diameter of the star and each emitting 5–10% of the total light of the star.[46][47] One theory to explain long secondary periods is that they are caused by the evolution of such cells combined with the rotation of the star.[58] Other theories include close binary interactions, chromospheric magnetic activity influencing mass loss, or non-radial pulsations such as g-modes.[61]

In addition to the discrete dominant periods, small-amplitude stochastic variations are seen. It is proposed that this is due to granulation, similar to the same effect on the sun but on a much larger scale.[58] Aboriginal people from the Great Victoria Desert of South Australia observed the variability of Betelgeuse and incorporated it into their oral traditions as Nyeeruna (Orion).[62][63] Nyeeruna generates fire-magic in his right hand (Betelgeuse) to gain access to the Yugarilya sisters of the Pleiades, but is prevented from doing so by the eldest sister Kambugudha (Hyades), who kicks sand into his face, causing his fire-magic to dissipate in his humiliation. This is described in the oral tradition as a cyclic process, with Nyeeruna's right hand brightening and fading over time.

Diàmetre[modifica]

Vegeu també: Llista d'estrelles més grans

On 13 December 1920, Betelgeuse became the first star outside the Solar System to have the angular size of its photosphere measured.[14] Although interferometry was still in its infancy, the experiment proved a success. The researchers, using a uniform disk model, determined that Betelgeuse had a diameter of 0.047 arcseconds, although the stellar disk was likely 17% larger due to the limb darkening, resulting in an estimate for its angular diameter of about 0.055".[14][35] Since then, other studies have produced angular diameters that range from 0.042 to 0.069 arcseconds.[18][33][64] Combining these data with historical distance estimates of 180 to 815 ly yields a projected radius of the stellar disk of anywhere from 1.2 to 8.9 AU.[note 1] Using the Solar System for comparison, the orbit of Mars is about 1.5 AU, Ceres in the asteroid belt 2.7 AU, Jupiter 5.5 AU—so, assuming Betelgeuse occupying the place of the Sun, its photosphere might extend beyond the Jovian orbit, not quite reaching Saturn at 9.5 AU.

Imatge de ràdio el 1998 (pre-Harper) mostrant la mida de la fotosfera de Betelgeuse (cercle) i l'efecte de les forces convectives a l'atmosfera de l'estrella

The precise diameter has been hard to define for several reasons:

  1. Betelgeuse is a pulsating star, so its diameter changes with time;
  2. The star has no definable "edge" as limb darkening causes the optical emissions to vary in color and decrease the farther one extends out from the center;
  3. Betelgeuse is surrounded by a circumstellar envelope composed of matter ejected from the star—matter which absorbs and emits light—making it difficult to define the photosphere of the star;[34]
  4. Measurements can be taken at varying wavelengths within the electromagnetic spectrum and the difference in reported diameters can be as much as 30–35%, yet comparing one finding with another is difficult as the star's apparent size differs depending on the wavelength used.[34] Studies have shown that the measured angular diameter is considerably larger at ultraviolet wavelengths, decreases through the visible to a minimum in the near-infrared, and increase again in the mid-infrared spectrum;[29][65][66]
  5. Atmospheric twinkling limits the resolution obtainable from ground-based telescopes since turbulence degrades angular resolution.[24]

To overcome these challenges, researchers have employed various solutions. Astronomical interferometry, first conceived by Hippolyte Fizeau in 1868, was the seminal concept that has enabled major improvements in modern telescopy and led to the creation of the Michelson interferometer in the 1880s, and the first successful measurement of Betelgeuse.[67] Just as human depth perception increases when two eyes instead of one perceive an object, Fizeau proposed the observation of stars through two apertures instead of one to obtain interferences that would furnish information on the star's spatial intensity distribution. The science evolved quickly and multiple-aperture interferometers are now used to capture speckled images, which are synthesized using Fourier analysis to produce a portrait of high resolution.[68] It was this methodology that identified the hotspots on Betelgeuse in the 1990s.[69] Other technological breakthroughs include adaptive optics,[70] space observatories like Hipparcos, Hubble and Spitzer,[29][71] and the Astronomical Multi-BEam Recombiner (AMBER), which combines the beams of three telescopes simultaneously, allowing researchers to achieve milliarcsecond spatial resolution.[72][73]

Which part of the electromagnetic spectrum—the visible, near-infrared (NIR) or mid-infrared (MIR)—produces the most accurate angular measurement is still debated.[note 1] In 1996, Betelgeuse was shown to have a uniform disk of 56.6 ± 1.0 mas. In 2000, the SSL team produced another measure of 54.7 ± 0.3 mas, ignoring any possible contribution from hotspots, which are less noticeable in the mid-infrared.[33] Also included was a theoretical allowance for limb darkening, yielding a diameter of 55.2 ± 0.5 mas. The earlier estimate equates to a radius of roughly 5.6 AU or 1.200 R_solar, assuming the 2008 Harper distance of 197.0 ± 45 pc,[74] a figure roughly the size of the Jovian orbit of 5.5 AU, published in 2009 in Astronomy Magazine and a year later in NASA's Astronomy Picture of the Day.[75][76]

A team of astronomers working in the near-infrared announced in 2004, that the more accurate photospheric measurement was 43.33 ± 0.04 mas.[65] The study also put forth an explanation as to why varying wavelengths from the visible to mid-infrared produce different diameters: the star is seen through a thick, warm extended atmosphere. At short wavelengths (the visible spectrum) the atmosphere scatters light, thus slightly increasing the star's diameter. At near-infrared wavelengths (K and L bands), the scattering is negligible, so the classical photosphere can be directly seen; in the mid-infrared the scattering increases once more, causing the thermal emission of the warm atmosphere to increase the apparent diameter.[65]

Imatge infraroja de Betelgeuse, Meissa i Bellatrix amb nebulae als voltants

Studies with the IOTA and VLTI published in 2009 brought strong support to Perrin's analysis and yielded diameters ranging from 42.57 to 44.28 mas with comparatively insignificant margins of error.[46][77] In 2011, a third estimate in the near-infrared corroborating the 2009 numbers, this time showing a limb-darkened disk diameter of 42.49 ± 0.06 mas.[78] Consequently, if one combines the smaller Hipparcos distance from van Leeuwen of 152 ± 20 pc with Perrin's angular measurement of 43.33 mas, a near-infrared photospheric estimate would equate to about 3.4 AU or Plantilla:Solar radius.[79] A 2014 paper derives an angular diameter of 42.28 mas (equivalent to a 41.01 mas uniform disc) using H and K band observations made with the VLTI AMBER instrument.[80]

Central to this discussion, it was announced in 2009, that the radius of Betelgeuse had shrunk from 1993 to 2009 by 15%, with the 2008 angular measurement equal to 47.0 mas, not too far from Perrin's estimate.[35][81] Unlike most earlier papers, this study encompassed a 15-year period at one specific wavelength. Earlier studies have typically lasted one to two years by comparison and have explored multiple wavelengths, often yielding vastly different results. The diminution in Betelgeuse's apparent size equates to a range of values between 56.0 ± 0.1 mas seen in 1993 to 47.0 ± 0.1 mas seen in 2008—a contraction of almost 0.9 AU in 15 years. What is not fully known is whether this observation is evidence of a rhythmic expansion and contraction of the star's photosphere as astronomers have theorized, and if so, what the periodic cycle might be, although Townes suggested that if a cycle does exist, it is probably a few decades long.[35] Other possible explanations are photospheric protrusions due to convection or a star that is not spherical but asymmetric causing the appearance of expansion and contraction as the star rotates on its axis.[82]

The debate about differences between measurements in the mid-infrared, which suggest a possible expansion and contraction of the star, and the near-infrared, which advocates a relatively constant photospheric diameter, remains to be resolved. In a paper published in 2012, the Berkeley team reported that their measurements were "dominated by the behavior of cool, optically thick material above the stellar photosphere," indicating that the apparent expansion and contraction may be due to activity in the star's outer shells and not the photosphere itself.[36] This conclusion, if further corroborated, would suggest an average angular diameter for Betelgeuse closer to Perrin's estimate at 43.33 arcseconds, hence a stellar radius of about 3.4 AU (Plantilla:Solar radius) assuming the shorter Hipparcos distance of 498 ± 73 ly in lieu of Harper's estimate at 643 ± 146 ly. The Gaia spacecraft may clarify assumptions presently used in calculating the size of Betelgeuse's stellar disk.

Once considered as having the largest angular diameter of any star in the sky after the Sun, Betelgeuse lost that distinction in 1997 when a group of astronomers measured R Doradus with a diameter of 57.0 ± 0.5 mas, although R Doradus, being much closer to Earth at about 200 ly, has a linear diameter roughly one-third that of Betelgeuse.[83]

The generally reported radii of large cool stars are Rosseland radii, defined as the radius of the photosphere at a specific optical depth of two thirds. This corresponds to the radius calculated from the effective temperature and bolometric luminosity. The Rosseland radius differs from directly measured radii, but there are widely used conversion factors depending on the wavelength used for the angular measurements.[84] For example, a measured angular diameter of 55.6 mas corresponds to a Rosseland mean diameter of 56.2 mas. The Rosseland radius derived from angular measurements of the star's photosphere rather than an extended envelope is Plantilla:Solar radius.[85]

Propietats[modifica]

(Juliol de 2008, actualitzat). Mides relatives dels planetes del sistema solar i diverses estrelles, incloent Betelgeuse:
Comparació de mida de Betelgeuse, Mu Cephei, KY Cygni, i V354 Cephei, segons Emily Levesque.

Betelgeuse is a very large, luminous but cool star classified as an M1-2 Ia-ab red supergiant. The letter "M" in this designation means that it is a red star belonging to the M spectral class and therefore has a relatively low photospheric temperature; the "Ia-ab" suffix luminosity class indicates that it is an intermediate-luminosity supergiant, with properties partway between a normal supergiant and a luminous supergiant. Since 1943, the spectrum of Betelgeuse has served as one of the stable anchor points by which other stars are classified.[86]

Uncertainty in the star's surface temperature, diameter, and distance make it difficult to achieve a precise measurement of Betelgeuse's luminosity, but research from 2012 quotes a luminosity of around 126.000 L, assuming a distance of 200 pc.[87] Studies since 2001 report effective temperatures ranging from 3,250 to 3,690 K. Values outside this range have previously been reported, and much of the variation is believed to be real, due to pulsations in the atmosphere.[85] The star is also a slow rotator and the most recent velocity recorded was 5 km/s[38]—much slower than Antares which has a rotational velocity of 20 km/s.[88] The rotation period depends on Betelgeuse's size and orientation to Earth, but it has been calculated to take 8.4 years to turn on its axis.[85]

In 2004, astronomers using computer simulations speculated that even if Betelgeuse is not rotating it might exhibit large-scale magnetic activity in its extended atmosphere, a factor where even moderately strong fields could have a meaningful influence over the star's dust, wind and mass-loss properties.[89] A series of spectropolarimetric observations obtained in 2010 with the Bernard Lyot Telescope at Pic du Midi Observatory revealed the presence of a weak magnetic field at the surface of Betelgeuse, suggesting that the giant convective motions of supergiant stars are able to trigger the onset of a small-scale dynamo effect.[90]

Massa[modifica]

Betelgeuse has no known orbital companions, so its mass cannot be calculated by that direct method. Modern mass estimates from theoretical modelling have produced values of Plantilla:Solar mass,[91] with values of Plantilla:Solar massPlantilla:Solar mass from older studies.[92] It has been calculated that Betelgeuse began its life as a star of Plantilla:Solar mass, based on a solar luminosity of 90,000–150,000.[74] A novel method of determining the supergiant's mass was proposed in 2011, arguing for a current stellar mass of Plantilla:Solar mass with an upper limit of 16.6 and lower of Plantilla:Solar mass, based on observations of the star's intensity profile from narrow H-band interferometry and using a photospheric measurement of roughly 4.3 AU or 955 R.[91] Model fitting to evolutionary tracks give a current mass of Plantilla:Solar mass, from an initial mass of Plantilla:Solar mass.[85]

Moviment[modifica]

Associació estel·lar OB1 d'Orió

The kinematics of Betelgeuse are complex. The age of Class M supergiants with an initial mass of Plantilla:Solar mass is roughly 10 million years.[48][93] Starting from its present position and motion a projection back in time would place Betelgeuse around 290 parsecs farther from the galactic plane—an implausible location, as there is no star formation region there. Moreover, Betelgeuse's projected pathway does not appear to intersect with the 25 Ori subassociation or the far younger Orion Nebula Cluster (ONC, also known as Ori OB1d), particularly since Very Long Baseline Array astrometry yields a distance from Betelgeuse to the ONC of between 389 and 414 parsecs. Consequently, it is likely that Betelgeuse has not always had its current motion through space but has changed course at one time or another, possibly the result of a nearby stellar explosion.[48][94] An observation by the Herschel Space Observatory in January 2013 revealed that the star's winds are crashing against the surrounding interstellar medium.[95]

The most likely star-formation scenario for Betelgeuse is that it is a runaway star from the Orion OB1 Association. Originally a member of a high-mass multiple system within Ori OB1a, Betelgeuse was probably formed about 10–12 million years ago,[96] but has evolved rapidly due to its high mass.[48]

Like many young stars in Orion whose mass is greater than Plantilla:Solar mass, Betelgeuse will use its fuel quickly and not live long. On the Hertzsprung–Russell diagram, Betelgeuse has moved off the main sequence and has swelled and cooled to become a red supergiant. Although young, Betelgeuse has exhausted the hydrogen in its core, causing the core to contract under the force of gravity into a hotter and denser state. As a result, it has begun to fuse helium into carbon and oxygen and has ignited a hydrogen shell outside the core. The hydrogen-burning shell and the contracting core cause the outer envelope to expand and cool. Its mass is such that the star will eventually fuse higher elements through neon, magnesium, and silicon all the way to iron, at which point it will collapse and explode, probably as a type II supernova.[97][98]

Dinàmica circumestel·lar[modifica]

Imatge del Very Large Telescope de l'ESO mostrant el disc estel·lar i un estesa atmosfera amb un plom desconegut prèviament de gas circumdant

In the late phase of stellar evolution, massive stars like Betelgeuse exhibit high rates of mass loss, possibly as much as 1 Plantilla:Solar mass every 10,000 years, resulting in a complex circumstellar environment that is constantly in flux. In a 2009 paper, stellar mass loss was cited as the "key to understanding the evolution of the universe from the earliest cosmological times to the current epoch, and of planet formation and the formation of life itself".[99] However, the physical mechanism is not well understood.[79] When Schwarzschild first proposed his theory of huge convection cells, he argued it was the likely cause of mass loss in evolved supergiants like Betelgeuse.[28] Recent work has corroborated this hypothesis, yet there are still uncertainties about the structure of their convection, the mechanism of their mass loss, the way dust forms in their extended atmosphere, and the conditions which precipitate their dramatic finale as a type II supernova.[79] In 2001, Graham Harper estimated a stellar wind at 0.03 Plantilla:Solar mass every 10,000 years,[100] but research since 2009 has provided evidence of episodic mass loss making any total figure for Betelgeuse uncertain.[101] Current observations suggest that a star like Betelgeuse may spend a portion of its lifetime as a red supergiant, but then cross back across the H-R diagram, pass once again through a brief yellow supergiant phase and then explode as a blue supergiant or Wolf-Rayet star.[8]

Representació artística feta per l'ESO mostrant Betelgeuse amb una enorme bombolla bullint sobre la seva superfície i una ploma radiant de gas que s'expulsa almenys a sis radis fotosfèrics o aproximadament a l'òrbita de Neptú

Astronomers may be close to solving this mystery. They noticed a large plume of gas extending at least six times its stellar radius indicating that Betelgeuse is not shedding matter evenly in all directions.[38] The plume's presence implies that the spherical symmetry of the star's photosphere, often observed in the infrared, is not preserved in its close environment. Asymmetries on the stellar disk had been reported at different wavelengths. However, due to the refined capabilities of the NACO adaptive optics on the VLT, these asymmetries have come into focus. The two mechanisms that could cause such asymmetrical mass loss, were large-scale convection cells or polar mass loss, possibly due to rotation.[38] Probing deeper with ESO's AMBER, gas in the supergiant's extended atmosphere has been observed vigorously moving up and down, creating bubbles as large as the supergiant itself, leading his team to conclude that such stellar upheaval is behind the massive plume ejection observed by Kervella.[101]

Embolcalls asimètrics[modifica]

In addition to the photosphere, six other components of Betelgeuse's atmosphere have now been identified. They are a molecular environment otherwise known as the MOLsphere, a gaseous envelope, a chromosphere, a dust environment and two outer shells (S1 and S2) composed of carbon monoxide (CO). Some of these elements are known to be asymmetric while others overlap.[46]

Vista exterior del Very Large Telescope de l'ESO (VLT) a Paranal, Xile

At about 0.45 stellar radii (~2–3 AU) above the photosphere, there may lie a molecular layer known as the MOLsphere or molecular environment. Studies show it to be composed of water vapor and carbon monoxide with an effective temperature of about 1.500±500 K.[46][102] Water vapor had been originally detected in the supergiant's spectrum in the 1960s with the two Stratoscope projects but had been ignored for decades. The MOLsphere may also contain SiO and Al2O3—molecules which could explain the formation of dust particles.

Vista interior d'una de les quatre Unitats de Telescopi de 8,2 metres al VLT de l'ESO

The asymmetric gaseous envelope, another cooler region, extends for several radii (~10–40 AU) from the photosphere. It is enriched in oxygen and especially in nitrogen relative to carbon. These composition anomalies are likely caused by contamination by CNO-processed material from the inside of Betelgeuse.[46][103]

Radio-telescope images taken in 1998 confirm that Betelgeuse has a highly complex atmosphere,[104] with a temperature of 3.450±850 K, similar to that recorded on the star's surface but much lower than surrounding gas in the same region.[104][105] The VLA images also show this lower-temperature gas progressively cools as it extends outward. Although unexpected, it turns out to be the most abundant constituent of Betelgeuse's atmosphere. "This alters our basic understanding of red-supergiant star atmospheres", explained Jeremy Lim, the team's leader. "Instead of the star's atmosphere expanding uniformly due to gas heated to high temperatures near its surface, it now appears that several giant convection cells propel gas from the star's surface into its atmosphere."[104] This is the same region in which Kervella's 2009 finding of a bright plume, possibly containing carbon and nitrogen and extending at least six photospheric radii in the southwest direction of the star, is believed to exist.[46]

The chromosphere was directly imaged by the Faint Object Camera on board the Hubble Space Telescope in ultraviolet wavelengths. The images also revealed a bright area in the southwest quadrant of the disk.[106] The average radius of the chromosphere in 1996 was about 2.2 times the optical disk (~10 AU) and was reported to have a temperature no higher than 5.500 K.[46][107] However, in 2004 observations with the STIS, Hubble's high-precision spectrometer, pointed to the existence of warm chromospheric plasma at least one arcsecond away from the star. At a distance of 197 pc, the size of the chromosphere could be up to 200 AU.[106] The observations have conclusively demonstrated that the warm chromospheric plasma spatially overlaps and co-exists with cool gas in Betelgeuse's gaseous envelope as well as with the dust in its circumstellar dust shells (see below).[46][106]

Aquesta imatge infraroja del VLT de l'ESO mostra embolcalls complexos de gas i pols al voltant de Betelgeuse – el cercle petit vermell al mig és la mida de la fotosfera.

The first claim of a dust shell surrounding Betelgeuse was put forth in 1977 when it was noted that dust shells around mature stars often emit large amounts of radiation in excess of the photospheric contribution. Using heterodyne interferometry, it was concluded that the red supergiant emits most of its excess radiation from positions beyond 12 stellar radii or roughly the distance of the Kuiper belt at 50 to 60 AU, which depends on the assumed stellar radius.[19][46] Since then, there have been studies done of this dust envelope at varying wavelengths yielding decidedly different results. Studies from the 1990s have estimated the inner radius of the dust shell anywhere from 0.5 to 1.0 arcseconds, or 100 to 200 AU.[108][109] These studies point out that the dust environment surrounding Betelgeuse is not static. In 1994, it was reported that Betelgeuse undergoes sporadic decades long dust production, followed by inactivity. In 1997, significant changes in the dust shell's morphology in one year were noted, suggesting that the shell is asymmetrically illuminated by a stellar radiation field strongly affected by the existence of photospheric hotspots.[108] The 1984 report of a giant asymmetric dust shell 1 pc (206,265 AU) has not been corroborated by recent studies, although another published the same year said that three dust shells were found extending four light-years from one side of the decaying star, suggesting that Betelgeuse sheds its outer layers as it moves.[110][111]

Although the exact size of the two outer CO shells remains elusive, preliminary estimates suggest that one shell extends from about 1.5 to 4.0 arcseconds and the other expands as far as 7.0 arcseconds.[112] Assuming the Jovian orbit of 5.5 AU as the star radius, the inner shell would extend roughly 50 to 150 stellar radii (~300 to 800 AU) with the outer one as far as 250 stellar radii (~1,400 AU). The Sun's heliopause is estimated at about 100 AU, so the size of this outer shell would be almost fourteen times the size of the Solar System.

Xoc en arc supersònic[modifica]

Betelgeuse is travelling supersonically through the interstellar medium at a speed of 30 km per second (i.e. ~6.3 AU per year) creating a bow shock.[113][114] The shock is not created by the star, but by its powerful stellar wind as it ejects vast amounts of gas into the interstellar medium at a speed of 17 km/s, heating the material surrounding the star, thereby making it visible in infrared light.[115] Because Betelgeuse is so bright, it was only in 1997 that the bow shock was first imaged. The cometary structure is estimated to be at least one parsec wide, assuming a distance of 643 light-years.[116]

Hydrodynamic simulations of the bow shock made in 2012 indicate that it is very young—less than 30,000 years old—suggesting two possibilities: that Betelgeuse moved into a region of the interstellar medium with different properties only recently or that Betelgeuse has undergone a significant transformation producing a changed stellar wind.[117] A 2012 paper, proposed that this phenomenon was caused by Betelgeuse transitioning from a blue supergiant (BSG) to a red supergiant (RSG). There is evidence that in the late evolutionary stage of a star like Betelgeuse, such stars "may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks."[113][118] Moreover, if future research bears out this hypothesis, Betelgeuse may prove to have traveled close to 200,000 AU as a red supergiant scattering as much as 3 M along its trajectory.

Evolució[modifica]

Hertzsprung–Russell diagram identifying supergiants like Betelgeuse that have moved off the main sequence

Betelgeuse is a red supergiant that has evolved from an O-type main sequence star. Its core will eventually collapse, producing a supernova explosion and leaving behind a compact remnant. The details depend on the exact initial mass and other physical properties of that main sequence star.

Fins a l'actualitat[modifica]

The initial mass of Betelgeuse can only be estimated by testing different stellar evolutionary models to match its current observed properties. The unknowns of both the models and the current properties mean that there is considerable uncertainty in Betelgeuse's initial appearance, but its mass is usually estimated to have been in the range of Plantilla:Solar mass, with modern models finding values of Plantilla:Solar mass. Its chemical makeup can be reasonably assumed to have been around 70% hydrogen, 28% helium, and 2.4% heavy elements, slightly more metal-rich than the sun but otherwise similar. The initial rotation rate is more uncertain, but models with slow to moderate initial rotation rates produce the best matches to Betelgeuse's current properties.[85][42][119] That main sequence version of Betelgeuse would have been a hot luminous star with a spectral type such as O9V.[87]

A Plantilla:Solar mass star would take between 11.5 and 15 million years to reach the red supergiant stage, with more rapidly-rotating stars taking the longest.[119] Rapidly-rotating Plantilla:Solar mass stars take only 9.3 million years to reach the red supergiant stage, while Plantilla:Solar mass stars with slow rotation take only 8.1 million years.[42] These form the best estimates of Betelgeuse's current age, with a preferred age since the zero age main sequence of 8.0–8.5 million years for a Plantilla:Solar mass star with no rotation.[85]

The time spent so far as a red supergiant can be estimated by comparing mass loss rates to the observed circumstellar material, as well as the abundances of heavy elements at the surface. Estimates range from 20,000 years to a maximum of 140,000 years. Betelgeuse appears to undergo short periods of heavy mass loss and is a runaway star moving rapidly through space, so comparisons of its current mass loss to the total lost mass are difficult.[85][42] The surface of Betelgeuse shows enhancement of nitrogen, relatively low levels of carbon, and a high proportion of 13C relative to 12C, all indicative of a star that has experienced the first dredge-up. However, the first dredge-up occurs soon after a star reaches the red supergiant phase and so this only means that Betelgeuse has been a red supergiant for at least a few thousand years. The best prediction is that Betelgeuse has already spent around 40,000 years as a red supergiant,[85] having left the main sequence perhaps one million years ago.[119]

The current mass can be estimated from evolutionary models from the initial mass and the expected mass lost so far. For Betelgeuse, the total mass lost is predicted to be no more than about Plantilla:Solar mass, giving a current mass of Plantilla:Solar mass, considerably higher than estimated by other means such as pulsational properties or limb-darkening models.[85]

Aproximació en supernova[modifica]

Celestia depiction of Orion as it might appear from Earth when Betelgeuse explodes as a supernova, which can be brighter than the supernova that exploded in 1006

All stars more massive than about Plantilla:Solar mass are expected to end their lives when their core collapses, typically producing a supernova explosion. Up to about Plantilla:Solar mass, a type II-P supernova is always produced from the red supergiant stage.[119] More massive stars can lose mass quickly enough that they evolve towards higher temperatures before their cores can collapse, particularly for rotating stars and models with especially high mass loss rates. These stars can produce type II-L or type IIb supernovae from yellow or blue supergiants, or type Ib/c supernovae from Wolf-Rayet stars.[120] Models of rotating Plantilla:Solar mass stars predict a peculiar type II supernova similar to SN 1987A from a blue supergiant progenitor.[119] On the other hand, non-rotating Plantilla:Solar mass models predict a type II-P supernova from a red supergiant progenitor.[85]

The time until Betelgeuse explodes depends on the predicted initial conditions and on the estimate of the time already spent as a red supergiant. The total lifetime from the start of the red supergiant phase to core collapse varies from about 300,000 years for a rotating Plantilla:Solar mass star, 550,000 years for a rotating Plantilla:Solar mass star, and up to a million years for a non-rotating Plantilla:Solar mass star. Given the estimated time since Betelgeuse became a red supergiant, estimates of its remaining lifetime range from a "best guess" of under 100,000 years for a non-rotating Plantilla:Solar mass model to far longer for rotating models or lower-mass stars.[85][119] Betelgeuse's suspected birthplace in the Orion OB1 Association is the location of several previous supernovae. It is believed that runaway stars may be caused by supernovae, and there is strong evidence that OB stars μ Columbae, AE Aurigae and 53 Arietis all originated from such explosions in Ori OB1 2.2, 2.7 and 4.9 million years ago.[94]

A typical type II-P supernova emits 2,0E+46 J of neutrinos and produces an explosion with a kinetic energy of 2,0E+44 J. As seen from Earth, it would have a peak apparent magnitude of about −12.4.[85] It may outshine the full moon and would be easily visible in daylight. This type of supernova would remain at roughly constant brightness for 2–3 months before rapidly dimming. The visible light is produced mainly by the radioactive decay of cobalt, and maintains its brightness due to the increasing transparency of the cooling hydrogen ejected by the supernova.[121]

Due to misunderstandings caused by the 2009 publication of the star's 15% contraction, apparently of its outer atmosphere,[34][75] Betelgeuse has frequently been the subject of scare stories and rumors suggesting that it will explode within a year, leading to exaggerated claims about the consequences of such an event.[122][123] The timing and prevalence of these rumors have been linked to broader misconceptions of astronomy, particularly to doomsday predictions relating to the Mayan calendar.[124][125] Betelgeuse is not likely to produce a gamma-ray burst and is not close enough for its x-rays, ultraviolet radiation, or ejected material to cause significant effects on Earth.[85]

Following Betelgeuse's supernova, a small dense remnant will be left behind, either a neutron star or black hole. This is predicted to be a neutron star of approximately Plantilla:Solar mass.[85]

Atributs etnològics[modifica]

Ortografia i pronunciació[modifica]

Betelgeuse has been known as Betelgeux,[126] and in German Beteigeuze[127] (according to Bode).[128][129] Betelgeux and Betelgeuze were used until the early 20th century, when the spelling Betelgeuse became universal.[130] There is no consensus for the correct pronunciation of the name,[131] and pronunciations for the star are as varied as its spellings:

Etimologia[modifica]

Betelgeuse is often mistranslated as "armpit of the central one".[134] In his 1899 work Star-Names and Their Meanings, American amateur naturalist Richard Hinckley Allen stated the derivation was from the ابط الجوزاء Ibṭ al-Jauzah, which he claimed degenerated into a number of forms including Bed Elgueze, Beit Algueze, Bet El-gueze, Beteigeuze and more, to the forms Betelgeuse, Betelguese, Betelgueze and Betelgeux. The star was named Beldengeuze in the Alfonsine Tables,[135] and Italian Jesuit priest and astronomer Giovanni Battista Riccioli had called it Bectelgeuze or Bedalgeuze.[4]

Paul Kunitzsch, Professor of Arabic Studies at the University of Munich, refuted Allen's derivation and instead proposed that the full name is a corruption of the Arabic يد الجوزاء Yad al-Jauzā' meaning "the Hand of al-Jauzā'", i.e., Orion.[136] European mistransliteration into medieval Latin led to the first character y (, with two dots underneath) being misread as a b (, with only one dot underneath). During the Renaissance, the star's name was written as بيت الجوزاء Bait al-Jauzā' ("house of Orion") or بط الجوزاء Baţ al-Jauzā', incorrectly thought to mean "armpit of Orion" (a true translation of "armpit" would be ابط, transliterated as Ibţ). This led to the modern rendering as Betelgeuse.[137] Other writers have since accepted Kunitzsch's explanation.[98]

The last part of the name, "-elgeuse", comes from the Arabic الجوزاء al-Jauzā', a historical Arabic name of the constellation Orion, a feminine name in old Arabian legend, and of uncertain meaning. Because جوز j-w-z, the root of jauzā', means "middle", al-Jauzā' roughly means "the Central One". The modern Arabic name for Orion is الجبار al-Jabbār ("the Giant"), although the use of الجوزاء al-Jauzā' in the name of the star has continued.[137] The 17th-century English translator Edmund Chilmead gave it the name Ied Algeuze ("Orion's Hand"), from Christmannus.[4] Other Arabic names recorded include Al Yad al Yamnā ("the Right Hand"), Al Dhira ("the Arm"), and Al Mankib ("the Shoulder"), all appended to "of the giant",[4] as منكب الجوزاء Mankib al Jauzā'.

Dunhuang Star Chart, circa AD 700, showing 参宿四 Shēnxiùsì (Betelgeuse), the Fourth Star of the constellation of Three Stars

Altres noms[modifica]

Other names for Betelgeuse included the Persian Bašn "the Arm", and Coptic Klaria "an Armlet".[4] Bahu was its Sanskrit name, as part of a Hindu understanding of the constellation as a running antelope or stag.[4] In traditional Chinese astronomy, Betelgeuse was known as 参宿四 (Shēnxiùsì, the Fourth Star of the constellation of Three Stars)[138] as the Chinese constellation 参宿 originally referred to the three stars in the girdle of Orion. This constellation was ultimately expanded to ten stars, but the earlier name stuck.[139] In Japan, the Taira, or Heike, clan adopted Betelgeuse and its red color as its symbol, calling the star Heike-boshi, (平家星), while the Minamoto, or Genji, clan had chosen Rigel and its white color. The two powerful families fought a legendary war in Japanese history, the stars seen as facing each other off and only kept apart by the Belt.[140][141]

In Tahitian lore, Betelgeuse was one of the pillars propping up the sky, known as Anâ-varu, the pillar to sit by. It was also called Ta'urua-nui-o-Mere "Great festivity in parental yearnings".[142] A Hawaiian term for it was Kaulua-koko "brilliant red star".[143] The Lacandon people of Central America knew it as chäk tulix "red butterfly".[144]

Astronomy writer Robert Burnham Jr. proposed the term padparadaschah which denotes a rare orange sapphire in India, for the star.[130]

Mitologia[modifica]

With the history of astronomy intimately associated with mythology and astrology before the scientific revolution, the red star, like the planet Mars that derives its name from a Roman war god, has been closely associated with the martial archetype of conquest for millennia, and by extension, the motif of death and rebirth.[4] Other cultures have produced different myths. Stephen R. Wilk has proposed the constellation of Orion could have represented the Greek mythological figure Pelops, who had an artificial shoulder of ivory made for him, with Betelgeuse as the shoulder, its color reminiscent of the reddish yellow sheen of ivory.[9]

In the Americas, Betelgeuse signifies a severed limb of a man-figure (Orion)—the Taulipang of Brazil know the constellation as Zililkawai, a hero whose leg was cut off by his wife, with the variable light from Betelgeuse linked to the severing of the limb. Similarly, the Lakota people of North America see it as a chief whose arm has been severed.[9] The Wardaman people of northern Australia knew the star as Ya-jungin "Owl Eyes Flicking", its variable light signifying its intermittent watching of ceremonies led by the Red Kangaroo Leader Rigel.[145] In South African mythology, Betelgeuse was perceived as a lion casting a predatory gaze toward the three zebras represented by Orion's Belt.[146]

A Sanskrit name for Betelgeuse is ārdrā "the moist one", eponymous of the Ardra lunar mansion in Hindu astrology.[147] The Rigvedic God of storms Rudra presided over the star; this association was linked by 19th-century star enthusiast Richard Hinckley Allen to Orion's stormy nature.[4] The constellations in Macedonian folklore represented agricultural items and animals, reflecting their village way of life. To them, Betelgeuse was Orach "the ploughman", alongside the rest of Orion which depicted a plough with oxen. The rising of Betelgeuse at around 3 a.m. in late summer and autumn signified the time for village men to go to the fields and plough.[148] To the Inuit, the appearance of Betelgeuse and Bellatrix high in the southern sky after sunset marked the beginning of spring and lengthening days in late February and early March. The two stars were known as Akuttujuuk "those (two) placed far apart", referring to the distance between them, mainly to people from North Baffin Island and Melville Peninsula.[13]

The opposed locations of Orion and Scorpius, with their corresponding bright variable red stars Betelgeuse and Antares, were noted by ancient cultures around the world. The setting of Orion and rising of Scorpius signify the death of Orion by the scorpion. In China they signify brothers and rivals Shen and Shang.[9] The Batak of Sumatra marked their New Year with the first new moon after the sinking of Orion's Belt below the horizon, at which point Betelgeuse remained "like the tail of a rooster". The positions of Betelgeuse and Antares at opposite ends of the celestial sky were considered significant and their constellations were seen as a pair of scorpions. Scorpion days marked as nights that both constellations could be seen.[149]

Betelgeuse a la cultura popular[modifica]

Vegeu també: Betelgeuse a la ficció

As one of the brightest and best-known stars, Betelgeuse has featured in many works of fiction. The star's unusual name inspired the title of the 1988 film Beetlejuice, and script writer Michael McDowell was impressed by how many people made the connection.[130] In the popular science fiction series The Hitchhiker's Guide to the Galaxy by Douglas Adams, Ford Prefect was from "a small planet somewhere in the vicinity of Betelgeuse."[150]

Two American navy ships were named after the star, both of them World War II vessels, the Plantilla:USS launched in 1939 and Plantilla:USS launched in 1944. In 1979, a French supertanker named Betelgeuse was moored off Whiddy Island discharging oil when it exploded, killing 50 people in one of the worst disasters in Ireland's history.[151]

The Dave Matthews Band song "Black and Blue Bird" references the star.[152]

The Philip Larkin poem "The North Ship", found in the collection of the same name, references the star in the section titled "Above 80° N", which reads: " 'A woman has ten claws,' / Sang the drunken boatswain; / Farther than Betelgeuse, / More brilliant than Orion / Or the planets Venus and Mars, / The star flames on the ocean; / 'A woman has ten claws,' / Sang the drunken boatswain."

Humbert Wolfe wrote a poem about Betelgeuse, which was set to music by Gustav Holst.[153]

Notes[modifica]

Article Year1 Telescope # Spectrum λ (μm) (mas)2 Radii3 @
197±45 pc
Notes
Michelson[14] 1920 Mt-Wilson 1 Visible 0.575 47.0 ± 4.7 3.2–6.3 AU Limb darkened +17% = 55.0
Bonneau[18] 1972 Palomar 8 Visible 0.422–0.719 52.0–69.0 3.6–9.2 AU Strong correlation of with λ
Balega[64] 1978 ESO 3 Visible 0.405–0.715 45.0–67.0 3.1–8.6 AU No correlation of with λ
1979 SAO 4 Visible 0.575–0.773 50.0–62.0 3.5–8.0 AU
Buscher[24] 1989 WHT 4 Visible 0.633–0.710 54.0–61.0 4.0–7.9 AU Discovered asymmetries/hotspots
Wilson[45] 1991 WHT 4 Visible 0.546–0.710 49.0–57.0 3.5–7.1 AU Confirmation of hotspots
Tuthill[27] 1993 WHT 8 Visible 0.633–0.710 43.5–54.2 3.2–7.0 AU Study of hotspots on 3 stars
1992 WHT 1 NIR 0.902 42.6 ± 0:03 3.0–5.6 AU
Gilliland[29] 1995 HST UV 0.24–0.27 104–112 10.3–11.1 FWHM diameters
0.265–0.295 92–100 9.1–9.8
Weiner[33] 1999 ISI 2 MIR (N Band) 11.150 54.7 ± 0.3 4.1–6.7 AU Limb darkened = 55.2 ± 0.5
Perrin[65] 1997 IOTA 7 NIR (K band) 2.200 43.33 ± 0.04 3.3–5.2 AU K and L bands, 11.5 μm data contrast
Haubois[46] 2005 IOTA 6 NIR (H band) 1.650 44.28 ± 0.15 3.4–5.4 AU Rosseland diameter 45.03 ± 0.12
Hernandez[77] 2006 VLTI 2 NIR (K band) 2.099–2.198 42:57 ± 0:02 3.2–5.2 AU High precision AMBER results.
Ohnaka[101] 2008 VLTI 3 NIR (K band) 2.280–2.310 43.19 ± 0.03 3.3–5.2 AU Limb darkened 43.56 ± 0.06
Townes[35] 1993 ISI 17 MIR (N band) 11.150 56.00 ± 1.00 4.2–6.8 AU Systematic study involving 17 measurements at the same wavelength from 1993 to 2009
2008 ISI MIR (N band) 11.150 47.00 ± 2.00 3.6–5.7 AU
2009 ISI MIR (N band) 11.150 48.00 ± 1.00 3.6–5.8 AU
Ohnaka[78] 2011 VLTI 3 NIR (K band) 2.280–2.310 42.05 ± 0.05 3.2–5.2 AU Limb darkened 42.49 ± 0.06
Harper[48] 2008 VLA Also noteworthy, Harper et al. in the conclusion of their paper make the following remark: "In a sense, the derived distance of 200 pc is a balance between the 131 pc (425 ly) Hipparcos distance and the radio which tends towards 250 pc (815 ly)"—hence establishing ± 815 ly as the outside distance for the star.
  1. 1,0 1,1 The above table provides a non-exhaustive list of angular measurements conducted since 1920. Also included is a column providing a current range of radii for each study based on Betelgeuse's most recent distance estimate (Harper et al.) of 197 ± 45 pc

Referències[modifica]

  1. «IAU Working Group on Star Names (WGSN)». [Consulta: 22 maig 2016].
  2. «Bulletin of the IAU Working Group on Star Names, No. 1». [Consulta: 28 juliol 2016].
  3. «IAU Catalog of Star Names». IAU Division C Working Group on Star Names (WGSN). [Consulta: 28 juliol 2016].
  4. 4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 Allen, Richard Hinckley. Star Names: Their Lore and Meaning. rep.. New York, NY: Dover Publications Inc., 1963, p. 310–12. ISBN 978-0-486-21079-7. 
  5. Stella lucida in umero dextro, quae ad rubedinem vergit. "Estel brillant a l'espatlla dreta, que s'inclina cap a la rubicundesa."
  6. Brück, H. A. (11–15 July 1978). "P. Angelo Secchi, S. J. 1818–1878". : 7–20 
  7. Reed Business Information «Ancient Chinese Suggest Betelgeuse is a Young Star». New Scientist, 92, 1276, 22-10-1981, pàg. 238.
  8. 8,0 8,1 Levesque, E. M. «The Physical Properties of Red Supergiants». Astronomical Society of the Pacific, 425 Hot and Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series, juny 2010, pàg. 103. arXiv: 0911.4720. Bibcode: 2010ASPC..425..103L.
  9. 9,0 9,1 9,2 9,3 Wilk, Stephen R. «Further Mythological Evidence for Ancient Knowledge of Variable Stars». The Journal of the American Association of Variable Star Observers, 27, 2, 1999, pàg. 171–74. Bibcode: 1999JAVSO..27..171W.
  10. Davis, Kate. «Variable Star of the Month: Alpha Orionis». American Association of Variable Star Observers (AAVSO), desembre 2000. [Consulta: 10 juliol 2010].
  11. 11,0 11,1 Burnham, Robert. Burnham's Celestial Handbook: An Observer's Guide to the Universe Beyond the Solar System, Volume 2. New York: Courier Dover Publications, 1978, p. 1290. ISBN 978-0-486-23568-4. 
  12. Kaler, James B.. The Hundred Greatest Stars. New York: Copernicus Books, 2002, p. 33. ISBN 978-0-387-95436-3. 
  13. 13,0 13,1 MacDonald, John. The Arctic sky: Inuit astronomy, star lore, and legend. Toronto, Ontario/Iqaluit, NWT: Royal Ontario Museum/Nunavut Research Institute, 1998, p. 52–54, 119. ISBN 978-0-88854-427-8. 
  14. 14,0 14,1 14,2 14,3 14,4 «Measurement of the diameter of Alpha Orionis with the interferometer». Astrophysical Journal, 53, 1921, pàg. 249–59. Bibcode: 1921ApJ....53..249M. DOI: 10.1086/142603. «The 0.047 arcsecond measurement was for a uniform disk. In the article Michelson notes that limb darkening would increase the angular diameter by about 17%, hence 0.055 arcseconds»
  15. 15,0 15,1 Tenn, Joseph S. «The Bruce Medalists». Martin Schwarzschild 1965. Astronomical Society of the Pacific (ASP), juny 2009. [Consulta: 28 setembre 2010].
  16. Schwarzschild, Martin. Structure and Evolution of the Stars. Princeton University Press, 1958. ISBN 978-0-486-61479-3. 
  17. Labeyrie, A. «Attainment of Diffraction Limited Resolution in Large Telescopes by Fourier Analysing Speckle Patterns in Star Images». Astronomy and Astrophysics, 6, maig 1970, pàg. 85. Bibcode: 1970A&A.....6...85L [Consulta: 12 octubre 2012].
  18. 18,0 18,1 18,2 «Speckle Interferometry: Color-Dependent Limb Darkening Evidenced on Alpha Orionis and Omicron Ceti». Astrophysical Journal, 181, 1973, pàg. L1. Bibcode: 1973ApJ...181L...1B. DOI: 10.1086/181171.
  19. 19,0 19,1 «Spatial Heterodyne Interferometry of VY Canis Majoris, Alpha Orionis, Alpha Scorpii, and R Leonis at 11 Microns». Astrophysical Journal Letters, 217, 1977, pàg. L97–L100. Bibcode: 1977ApJ...217L..97S. DOI: 10.1086/182547.
  20. «Observations of the circumstellar gas shells around Betelgeuse and Antares». Astrophysical Journal, 201, novembre 1975, pàg. L153–L156. Bibcode: 1975ApJ...201L.153B. DOI: 10.1086/181964.
  21. «Circumstellar dust shell models for Alpha Orionis». Astrophysical Journal, 195, febrer 1975, pàg. 689–693. Bibcode: 1975ApJ...195..689D. DOI: 10.1086/153369.
  22. «The circumstellar shell of alpha Orionis from a study of the Fe II emission lines». Astrophysical Journal, 198, 1, juny 1975, pàg. 369–371, 373–378. Bibcode: 1975ApJ...198..369B. DOI: 10.1086/153612.
  23. Bernat, David. «Aperture Masking Interferometry». Ask An Astronomer. Cornell University Astronomy, 2008. [Consulta: 15 octubre 2012].
  24. 24,0 24,1 24,2 Buscher, D. F.; Baldwin, J. E.; Warner, P. J.; Haniff, C. A. «Detection of a bright feature on the surface of Betelgeuse». Monthly Notices of the Royal Astronomical Society, 245, 1990, pàg. 7. Bibcode: 1990MNRAS.245P...7B.
  25. Wilson, R. W.; Dhillon, V. S.; Haniff, C. A. «The changing face of Betelgeuse». Monthly Notices of the Royal Astronomical Society, 291, 4, 1997, pàg. 819. Bibcode: 1997MNRAS.291..819W. DOI: 10.1093/mnras/291.4.819.
  26. Burns, D.; Baldwin, J. E.; Boysen, R. C.; Haniff, C. A.; Lawson, P. R. «The surface structure and limb-darkening profile of Betelgeuse». Monthly Notices of the Royal Astronomical Society, 290, 1, setembre 1997, pàg. L11–L16. Bibcode: 1997MNRAS.290L..11B. DOI: 10.1093/mnras/290.1.l11.
  27. 27,0 27,1 «Hotspots on late-type supergiants». Monthly Notices of the Royal Astronomical Society, 285, 3, març 1997, pàg. 529–39. Bibcode: 1997MNRAS.285..529T. DOI: 10.1093/mnras/285.3.529.
  28. 28,0 28,1 Schwarzschild, Martin «On the Scale of Photospheric Convection in Red Giants and Supergiants». Astrophysical Journal, 195, 1, 1975, pàg. 137–44. Bibcode: 1975ApJ...195..137S. DOI: 10.1086/153313.
  29. 29,0 29,1 29,2 29,3 «First Image of the Surface of a Star with the Hubble Space Telescope» (PDF). Astrophysical Journal Letters, 463, 1, maig 1996, pàg. L29. Bibcode: 1996ApJ...463L..29G. DOI: 10.1086/310043 [Consulta: 1r agost 2010]. «The yellow/red "image" or "photo" of Betelgeuse commonly seen is not a picture of the red supergiant, but a mathematically generated image based on the photograph. The photograph was of much lower resolution: The entire Betelgeuse image fit within a 10x10 pixel area on the Hubble Space Telescopes Faint Object Camera. The images were oversampled by a factor of 5 with bicubic spline interpolation, then deconvolved.»
  30. A. N. Cox. Allen's Astrophysical Quantities. New York: Springer-Verlag, 2000. ISBN 978-0-387-98746-0. 
  31. Petersen, Carolyn Collins; Brandt, John C. Hubble Vision: Further Adventures with the Hubble Space Telescope. 2nd. Cambridge, England: Cambridge University Press, 1998, p. 91–92. ISBN 978-0-521-59291-8. 
  32. «Spatially Resolved Hubble Space Telescope Spectra of the Chromosphere of α Orionis». The Astronomical Journal, 116, 5, 1998, pàg. 2501–12. Bibcode: 1998AJ....116.2501U. DOI: 10.1086/300596 [Consulta: 20 juny 2007].
  33. 33,0 33,1 33,2 33,3 Weiner, J.; Danchi, W. C.; Hale, D. D. S.; McMahon, J.; Townes, C. H. «Precision Measurements of the Diameters of α Orionis and ο Ceti at 11 Microns». The Astrophysical Journal, 544, 2, desembre 2000, pàg. 1097–1100. Bibcode: 2000ApJ...544.1097W. DOI: 10.1086/317264 [Consulta: 23 juny 2007].
  34. 34,0 34,1 34,2 34,3 34,4 Sanders, Robert. «Red Giant Star Betelgeuse Mysteriously Shrinking». UC Berkeley News. UC Berkeley, 09-06-2009. [Consulta: 18 abril 2010].
  35. 35,0 35,1 35,2 35,3 35,4 «A Systematic Change with Time in the Size of Betelgeuse». The Astrophysical Journal Letters, 697, 2, 2009, pàg. L127–28. Bibcode: 2009ApJ...697L.127T. DOI: 10.1088/0004-637X/697/2/L127.
  36. 36,0 36,1 36,2 Ravi, V.; Wishnow, E.; Lockwood, S.; Townes, C. «The Many Faces of Betelgeuse». Astronomical Society of the Pacific, 448, desembre 2011, pàg. 1025. arXiv: 1012.0377. Bibcode: 2011ASPC..448.1025R.
  37. Bernat, Andrew P. «The Circumstellar Shells and Mass Loss Rates of Four M Supergiants». Astrophysical Journal, 213, 1977, pàg. 756–66. Bibcode: 1977ApJ...213..756B. DOI: 10.1086/155205.
  38. 38,0 38,1 38,2 38,3 38,4 Kervella, P.; Verhoelst, T.; Ridgway, S. T.; Perrin, G.; Lacour, S. «The Close Circumstellar Environment of Betelgeuse. Adaptive Optics Spectro-imaging in the Near-IR with VLT/NACO». Astronomy and Astrophysics, 504, 1, setembre 2009, pàg. 115–25. arXiv: 0907.1843. Bibcode: 2009A&A...504..115K. DOI: 10.1051/0004-6361/200912521.
  39. ; Skrutskie. M.«Very Bright Stars in the 2MASS Point Source Catalog (PSC)». The Two Micron All Sky Survey at IPAC, 07-09-2009. [Consulta: 28 desembre 2011].
  40. «CCDM (Catalog of Components of Double & Multiple stars (Dommanget+ 2002)». VizieR. Centre de Données astronomiques de Strasbourg. [Consulta: 22 agost 2010].
  41. ; Wycoff, Gary L.; Hartkopf, William I.; Douglass, Geoffrey G.; Worley, Charles E. «The 2001 US Naval Observatory Double Star CD-ROM. I. The Washington Double Star Catalog». The Astronomical Journal, 122, 6, 2001, pàg. 3466. Bibcode: 2001AJ....122.3466M. DOI: 10.1086/323920.
  42. 42,0 42,1 42,2 42,3 «Betelgeuse and the Red Supergiants». Betelgeuse Workshop 2012. Edited by P. Kervella, 60, 2013, pàg. 307–316. arXiv: 1303.0321. Bibcode: 2013EAS....60..307V. DOI: 10.1051/eas/1360036.
  43. Karovska, M.; Noyes, R. W.; Roddier, F.; Nisenson, P.; Stachnik, R. V. «On a Possible Close Companion to α Ori». Bulletin of the American Astronomical Society, 17, 1985, pàg. 598. Bibcode: 1985BAAS...17..598K.
  44. «On the alpha Orionis triple system». Astrophysical Journal, 308, 1986, pàg. 675–85. Bibcode: 1986ApJ...308..260K. DOI: 10.1086/164497.
  45. 45,0 45,1 Wilson, R. W.; Baldwin, J. E.; Buscher, D. F.; Warner, P. J. «High-resolution imaging of Betelgeuse and Mira». Monthly Notices of the Royal Astronomical Society, 257, 3, 1992, pàg. 369–76. Bibcode: 1992MNRAS.257..369W. DOI: 10.1093/mnras/257.3.369.
  46. 46,00 46,01 46,02 46,03 46,04 46,05 46,06 46,07 46,08 46,09 46,10 Haubois, X.; Perrin, G.; Lacour, S.; Verhoelst, T.; Meimon, S. «Imaging the Spotty Surface of Betelgeuse in the H Band». Astronomy & Astrophysics, 508, 2, 2009, pàg. 923–32. arXiv: 0910.4167. Bibcode: 2009A&A...508..923H. DOI: 10.1051/0004-6361/200912927.
  47. 47,0 47,1 47,2 ; Kervella, P.; Perrin, G.; Chiavassa, A.; Le Bouquin, J.-B. «The close circumstellar environment of Betelgeuse. IV. VLTI/PIONIER interferometric monitoring of the photosphere». Astronomy & Astrophysics, 588, 2016, pàg. A130. arXiv: 1602.05108. Bibcode: 2016A&A...588A.130M. DOI: 10.1051/0004-6361/201527028.
  48. 48,0 48,1 48,2 48,3 48,4 48,5 48,6 48,7 48,8 «A New VLA-Hipparcos Distance to Betelgeuse and its Implications» (PDF). The Astronomical Journal, 135, 4, abril 2008, pàg. 1430–40. Bibcode: 2008AJ....135.1430H. DOI: 10.1088/0004-6256/135/4/1430 [Consulta: 10 juliol 2010].
  49. van Altena, W. F.; Lee, J. T.; Hoffleit, D. «Yale Trigonometric Parallaxes Preliminary». Yale University Observatory (1991), 1174, octubre 1995, pàg. 0. Bibcode: 1995yCat.1174....0V.
  50. «Hipparcos Input Catalogue, Version 2 (Turon+ 1993)». VizieR. Centre de Données astronomiques de Strasbourg, 1993. [Consulta: 20 juny 2010].
  51. Perryman, M. A. C.; Lindegren, L.; Kovalevsky, J.; Hoeg, E.; Bastian, U. «The Hipparcos Catalogue». Astronomy & Astrophysics, 323, 1997, pàg. L49–L52. Bibcode: 1997A&A...323L..49P.
  52. Eyer, L.; Grenon, M. «Problems Encountered in the Hipparcos Variable Stars Analysis». Delta Scuti and Related Stars, Reference Handbook and Proceedings of the 6th Vienna Workshop in Astrophysics, 210, 2000, pàg. 482. arXiv: astro-ph/0002235. Bibcode: 2000ASPC..210..482E.
  53. van Leeuwen, F «Hipparcos, the New Reduction». Astronomy and Astrophysics, 474, 2, novembre 2007, pàg. 653. arXiv: 0708.1752. Bibcode: 2007A&A...474..653V. DOI: 10.1051/0004-6361:20078357.
  54. 54,0 54,1 ; Brown, A.; Guinan, E. F.; O'Gorman, E.; Richards, A. M. S. «An Updated 2017 Astrometric Solution for Betelgeuse». The Astronomical Journal, 154, 1, 2017, pàg. 11. arXiv: 1706.06020. Bibcode: 2017AJ....154...11H. DOI: 10.3847/1538-3881/aa6ff9.
  55. «Science Performance». European Space Agency, 19-02-2013. [Consulta: 1r març 2013].
  56. T. Prusti «The Gaia mission». Astronomy and Astrophysics, 595, 2016, p. A1. DOI: 10.1051/0004-6361/201629272 [Consulta: 21 setembre 2016].
  57. 57,0 57,1 Error de citació: Etiqueta <ref> no vàlida; no s'ha proporcionat text per les refs amb l'etiqueta gcvs
  58. 58,0 58,1 58,2 58,3 ; Szabó, Gy. M.; Bedding, T. R. «Variability in red supergiant stars: Pulsations, long secondary periods and convection noise». Monthly Notices of the Royal Astronomical Society, 372, 4, 2006, pàg. 1721. arXiv: astro-ph/0608438. Bibcode: 2006MNRAS.372.1721K. DOI: 10.1111/j.1365-2966.2006.10973.x.
  59. ; Li, Y. «Evolution and Pulsation of Red Supergiants at Different Metallicities». The Astrophysical Journal, 565, 1, 2002, pàg. 559–570. Bibcode: 2002ApJ...565..559G. DOI: 10.1086/324295.
  60. «The variability of alpha Orionis». Astronomical Society of the Pacific, 96, 1984, pàg. 366. Bibcode: 1984PASP...96..366G. DOI: 10.1086/131347.
  61. ; Olivier, E. A.; Kawaler, S. D. «Long Secondary Periods in Pulsating Asymptotic Giant Branch Stars: An Investigation of their Origin». The Astrophysical Journal, 604, 2, 2004, pàg. 800. Bibcode: 2004ApJ...604..800W. DOI: 10.1086/382123.
  62. Hamacher, D.W. «Observations of red–giant variable stars by Aboriginal Australians». The Australian Journal of Anthropology, 29, 2018, pàg. 89–107. arXiv: 1709.04634. Bibcode: 2018AuJAn..29...89H. DOI: 10.1111/taja.12257.
  63. Leaman, T.; Hamacher, D.W. «Aboriginal Astronomical traditions from Ooldea, South Australia, Part 1: Nyeeruna and the Orion Story.». Journal of Astronomical History and Heritage, 17, 2, 2014, pàg. 180–194.. arXiv: 1403.7849. Bibcode: 2014JAHH...17..180L.
  64. 64,0 64,1 Balega, Iu.; Blazit, A.; Bonneau, D.; Koechlin, L.; Labeyrie, A. «The angular diameter of Betelgeuse». Astronomy and Astrophysics, 115, 2, novembre 1982, pàg. 253–56. Bibcode: 1982A&A...115..253B.
  65. 65,0 65,1 65,2 65,3 «Interferometric Observations of the Supergiant Stars α Orionis and α Herculis with FLUOR at IOTA». Astronomy and Astrophysics, 418, 2, 2004, pàg. 675–85. arXiv: astro-ph/0402099. Bibcode: 2004A&A...418..675P. DOI: 10.1051/0004-6361:20040052. «Assuming a distance of 197 ± 45 pc, an angular distance of 43.33 ± 0.04 mas would equate to a radius of 4.3 AU or Plantilla:Solar radius»
  66. Young, John. «Surface Imaging of Betelgeuse with COAST and the WHT». University of Cambridge, 24-11-2006. Arxivat de l'original el 14 juny 2007. [Consulta: 21 juny 2007]. «Images of hotspots on the surface of Betelgeuse taken at visible and infra-red wavelengths using high resolution ground-based interferometers»
  67. Perrin, Guy; Malbet, Fabien «Observing with the VLTI». EAS Publications Series, 6, 2003, pàg. 3. Bibcode: 2003EAS.....6D...3P. DOI: 10.1051/eas/20030601.
  68. Plantilla:Cite APOD
  69. Worden, S. «Speckle Interferometry». New Scientist, 78, 1978, pàg. 238–40. Bibcode: 1978NewSc..78..238W.
  70. Roddier, F. «Ground-Based Interferometry with Adaptive Optics». Working on the Fringe: Optical and IR Interferometry from Ground and Space. Proceedings from ASP Conference, 194, 1999, pàg. 318. Bibcode: 1999ASPC..194..318R.
  71. «Top Five Breakthroughs From Hubble's Workhorse Camera». NASA Jet Propulsion Laboratory, California Institute of Technology, 04-05-2009. [Consulta: 28 agost 2007].
  72. ; Petrov R.; Malbet, F.«The Sky Through Three Giant Eyes, AMBER Instrument on VLT Delivers a Wealth of Results». European Southern Observatory, 23-02-2007. [Consulta: 29 agost 2007].
  73. Wittkowski, M. «MIDI and AMBER from the User's Point of View». New Astronomy Reviews, 51, 8–9, 23-02-2007, pàg. 639–649. Bibcode: 2007NewAR..51..639W. DOI: 10.1016/j.newar.2007.04.005 [Consulta: 29 agost 2007].
  74. 74,0 74,1 «Red Supergiants as Potential Type IIn Supernova Progenitors: Spatially Resolved 4.6 μm CO Emission Around VY CMa and Betelgeuse». The Astronomical Journal, 137, 3, març 2009, pàg. 3558–3573. arXiv: 0811.3037. Bibcode: 2009AJ....137.3558S. DOI: 10.1088/0004-6256/137/3/3558.
  75. 75,0 75,1 «Red Giant Star Betelgeuse in the Constellation Orion is Mysteriously Shrinking». Astronomy Magazine, 2009 [Consulta: 14 setembre 2012].
  76. Plantilla:Cite APOD
  77. 77,0 77,1 Hernandez Utrera, O.; Chelli, A «Accurate Diameter Measurement of Betelgeuse Using the VLTI/AMBER Instrument». Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias), 37, 2009, pàg. 179–80. Bibcode: 2009RMxAC..37..179H.
  78. 78,0 78,1 «Imaging the Dynamical Atmosphere of the Red Supergiant Betelgeuse in the CO First Overtone Lines with VLTI/AMBER». Astronomy & Astrophysics, 529, id.A163, maig 2011, pàg. A163. arXiv: 1104.0958. Bibcode: 2011A&A...529A.163O. DOI: 10.1051/0004-6361/201016279. «"We derive a uniform-disk diameter of 42.05 ± 0.05 mas and a power-law-type limb-darkened disk diameter of 42.49 ± 0.06 mas and a limb-darkening parameter of (9.7 ± 0.5) × 10−2
  79. 79,0 79,1 79,2 «The Close Circumstellar Environment of Betelgeuse. II. Diffraction-limited Spectro-imaging from 7.76 to 19.50 μm with VLT/VISIR». Astronomy & Astrophysics, 531, id.A117, 2011, pàg. A117. arXiv: 1106.5041. Bibcode: 2011A&A...531A.117K. DOI: 10.1051/0004-6361/201116962.
  80. Montargès, M.; Kervella, P.; Perrin, G.; Ohnaka, K.; Chiavassa, A. «Properties of the CO and H2O MOLsphere of the red supergiant Betelgeuse from VLTI/AMBER observations». Astronomy & Astrophysics, 572, 2014, pàg. id.A17. arXiv: 1408.2994. Bibcode: 2014A&A...572A..17M. DOI: 10.1051/0004-6361/201423538.
  81. Cowen, Ron. «Betelgeuse Shrinks: The Red Supergiant has Lost 15 Percent of its Size», 10-06-2009. «The shrinkage corresponds to the star contracting by a distance equal to that between Venus and the Sun, researchers reported June 9 at an American Astronomical Society meeting and in the June 1 Astrophysical Journal Letters.»
  82. Courtland, Rachel. «Betelgeuse: The incredible Shrinking Star?». New Scientist. Reed Business Information Ltd., 2009. [Consulta: 25 setembre 2010].
  83. Bedding, T. R.; Zijlstra, A. A.; Von Der Luhe, O.; Robertson, J. G.; Marson, R. G. «The Angular Diameter of R Doradus: a Nearby Mira-like Star». Monthly Notices of the Royal Astronomical Society, 286, 4, 1997, pàg. 957–62. arXiv: astro-ph/9701021. Bibcode: 1997MNRAS.286..957B. DOI: 10.1093/mnras/286.4.957.
  84. Dyck, H. M.; Van Belle, G. T.; Thompson, R. R. «Radii and Effective Temperatures for K and M Giants and Supergiants. II». The Astronomical Journal, 116, 2, 1998, pàg. 981. Bibcode: 1998AJ....116..981D. DOI: 10.1086/300453.
  85. 85,00 85,01 85,02 85,03 85,04 85,05 85,06 85,07 85,08 85,09 85,10 85,11 85,12 85,13 Error de citació: Etiqueta <ref> no vàlida; no s'ha proporcionat text per les refs amb l'etiqueta dolan2016
  86. Garrison, R. F. «Anchor Points for the MK System of Spectral Classification». Bulletin of the American Astronomical Society, 25, 1993, pàg. 1319. Bibcode: 1993AAS...183.1710G [Consulta: 4 febrer 2012].
  87. 87,0 87,1 ; Matthews, L. D.; Gérard, E.; Libert, Y. «Discovery of a detached H I gas shell surrounding α Orionis». Monthly Notices of the Royal Astronomical Society, 422, 4, 2012, pàg. 3433. arXiv: 1203.0255. Bibcode: 2012MNRAS.422.3433L. DOI: 10.1111/j.1365-2966.2012.20853.x.
  88. «Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)». VizieR. Centre de Données astronomiques de Strasbourg. [Consulta: 7 setembre 2012].
  89. Dorch, S. B. F. «Magnetic Activity in Late-type Giant Stars: Numerical MHD Simulations of Non-linear Dynamo Action in Betelgeuse». Astronomy & Astrophysics, 423, 3, 2004, pàg. 1101–07. arXiv: astro-ph/0403321. Bibcode: 2004A&A...423.1101D. DOI: 10.1051/0004-6361:20040435.
  90. «The Magnetic Field of Betelgeuse : a Local Dynamo from Giant Convection Cells?». Astronomy & Astrophysics, 516, 2010, pàg. L2. arXiv: 1005.4845. Bibcode: 2010A&A...516L...2A. DOI: 10.1051/0004-6361/201014925.
  91. 91,0 91,1 «Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening». Astronomical Society of the Pacific, 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451, desembre 2011, pàg. 117. arXiv: 1109.4562. Bibcode: 2010ASPC..425..103L.
  92. Posson-Brown, Jennifer; Kashyap, Vinay L. & Pease, Deron O. et al. (2006), "Dark Supergiant: Chandra's Limits on X-rays from Betelgeuse", arΧiv:astro-ph/0606387
  93. Maeder, André; Meynet, Georges «The Role of Rotation and Mass Loss in the Evolution of Massive Stars». Proceedings of IAU Symposium, 212, 2003, pàg. 267. Bibcode: 2003IAUS..212..267M.
  94. 94,0 94,1 Reynolds, R. J.; Ogden, P. M. «Optical evidence for a very large, expanding shell associated with the I Orion OB association, Barnard's loop, and the high galactic latitude H-alpha filaments in Eridanus». The Astrophysical Journal, 229, 1979, pàg. 942. Bibcode: 1979ApJ...229..942R. DOI: 10.1086/157028.
  95. ; Cox, N. L. J.; Royer, P.; Van Marle, A. J.; Vandenbussche, B. «The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure». Astronomy & Astrophysics, 548, 2012, pàg. A113. arXiv: 1212.4870. Bibcode: 2012A&A...548A.113D. DOI: 10.1051/0004-6361/201219792.
  96. Plantilla:Cite APOD
  97. SolStation. «Betelgeuse; Release No.: 04-03». Sol Company. [Consulta: 20 juliol 2010].
  98. 98,0 98,1 Kaler, James B. «Betelgeuse (Alpha Orionis)». Stars website. University of Illinois. [Consulta: 19 juliol 2009].
  99. Ridgway, Stephen; Aufdenberg, Jason; Creech-Eakman, Michelle; Elias, Nicholas; Howell, Steve «Quantifying Stellar Mass Loss with High Angular Resolution Imaging». Astronomy & Astrophysics, 247, 2009, pàg. 247. arXiv: 0902.3008. Bibcode: 2009astro2010S.247R.
  100. «A Spatially Resolved, Semiempirical Model for the Extended Atmosphere of α Orionis (M2 Iab)». The Astrophysical Journal, 551, 2, abril 2001, pàg. 1073–98. Bibcode: 2001ApJ...551.1073H. DOI: 10.1086/320215.
  101. 101,0 101,1 101,2 A. P. Ohnaka, K.; Hofmann, K.-H.; Benisty, M.; Chelli, A.; Driebe, T. «Spatially Resolving the Inhomogeneous Structure of the Dynamical Atmosphere of Betelgeuse with VLTI/AMBER». Astronomy & Astrophysics, 503, 1, 2009, pàg. 183–95. arXiv: 0906.4792. Bibcode: 2009A&A...503..183O. DOI: 10.1051/0004-6361/200912247.
  102. Tsuji, T. «Water on the Early M Supergiant Stars α Orionis and μ Cephei». The Astrophysical Journal, 538, 2, 2000, pàg. 801–07. Bibcode: 2000ApJ...538..801T. DOI: 10.1086/309185.
  103. «Carbon, Nitrogen, and Oxygen Abundances in Betelgeuse». Astrophysical Journal, 284, 1984, pàg. 223–37. Bibcode: 1984ApJ...284..223L. DOI: 10.1086/162401.
  104. 104,0 104,1 104,2 Dave Finley. «VLA Shows "Boiling" in Atmosphere of Betelgeuse». National Radio Astronomy Observatory, 08-04-1998. [Consulta: 7 setembre 2010].
  105. «Large Convection Cells as the Source of Betelgeuse's Extended Atmosphere». Nature, 392, 6676, 1998, pàg. 575–77. Bibcode: 1998Natur.392..575L. DOI: 10.1038/33352.
  106. 106,0 106,1 106,2 Lobel, A.; Aufdenberg, J.; Dupree, A. K.; Kurucz, R. L.; Stefanik, R. P. «Spatially Resolved STIS Spectroscopy of Betelgeuse's Outer Atmosphere». Proceedings of the 219th Symposium of the IAU, 219, 2004, pàg. 641. arXiv: astro-ph/0312076. Bibcode: 2004IAUS..219..641L. «In the article, Lobel et al. equate 1 arcsecond to approximately 40 stellar radii, a calculation which in 2004 likely assumed a Hipparcos distance of 131 pc (430 ly) and a photospheric diameter of 0.0552" from Weiner et al.»
  107. Dupree, Andrea K.; Gilliland, Ronald L. «HST Direct Image of Betelgeuse». Bulletin of the American Astronomical Society, 27, desembre 1995, pàg. 1328. Bibcode: 1995AAS...187.3201D. «Such a major single feature is distinctly different from scattered smaller regions of activity typically found on the Sun although the strong ultraviolet flux enhancement is characteristic of stellar magnetic activity. This inhomogeneity may be caused by a large scale convection cell or result from global pulsations and shock structures that heat the chromosphere."»
  108. 108,0 108,1 Skinner, C. J.; Dougherty, S. M.; Meixner, M.; Bode, M. F.; Davis, R. J. «Circumstellar Environments – V. The Asymmetric Chromosphere and Dust Shell of Alpha Orionis». Monthly Notices of the Royal Astronomical Society, 288, 2, 1997, pàg. 295–306. Bibcode: 1997MNRAS.288..295S. DOI: 10.1093/mnras/288.2.295.
  109. «Characteristics of Dust Shells around 13 Late-type Stars». The Astronomical Journal, 107, 4, 1994, pàg. 1469–1513. Bibcode: 1994AJ....107.1469D. DOI: 10.1086/116960.
  110. Baud, B.; Waters, R.; De Vries, J.; Van Albada, G. D.; Boulanger, F. «A Giant Asymmetric Dust Shell around Betelgeuse». Bulletin of the American Astronomical Society, 16, gener 1984, pàg. 405. Bibcode: 1984BAAS...16..405B.
  111. «The Infrared Universe». Space World, 2, 1984, pàg. 4–7. Bibcode: 1984SpWd....2....4D.
  112. Harper, Graham M.; Carpenter, Kenneth G.; Ryde, Nils; Smith, Nathan; Brown, Joanna «UV, IR, and mm Studies of CO Surrounding the Red Supergiant α Orionis (M2 Iab)». AIP Conference Proceedings, 1094, 2009, pàg. 868–71. Bibcode: 2009AIPC.1094..868H. DOI: 10.1063/1.3099254.
  113. 113,0 113,1 «3D Simulations of Betelgeuse's Bow Shock». Astronomy & Astrophysics, 541, id.A1, 2012, pàg. A1. arXiv: 1109.1555v2. Bibcode: 2012A&A...541A...1M. DOI: 10.1051/0004-6361/201118002.
  114. Lamers, Henny J. G. L. M.; Cassinelli, Joseph P.. Introduction to Stellar Winds. Cambridge, UK: Cambridge University Press, juny 1999. ISBN 978-0-521-59565-0. 
  115. «Akari Infrared Space Telescope: Latest Science Highlights». European Space Agency, 19-11-2008. Arxivat de l'original el 2011-02-17. [Consulta: 25 juny 2012].
  116. «A Parsec-Size Bow Shock around Betelgeuse». Astronomical Journal, 114, 1997, pàg. 837–40. Bibcode: 1997AJ....114..837N. DOI: 10.1086/118517 [Consulta: 25 juny 2012]. «Noriega in 1997 estimated the size to be 0.8 parsecs, having assumed the earlier distance estimate of 400 ly. With a current distance estimate of 643 ly, the bow shock would measure ~1.28 parsecs or over 4 ly»
  117. Newton, Elizabeth. «This Star Lives in Exciting Times, or, How Did Betelgeuse Make that Funny Shape?». Astrobites, 26-04-2012. [Consulta: 25 juny 2012].
  118. MacKey, Jonathan; Mohamed, Shazrene; Neilson, Hilding R.; Langer, Norbert; Meyer, Dominique M.-A. «Double Bow Shocks Around Young, Runaway Red Supergiants: Application to Betelgeuse». The Astrophysical Journal, 751, 1, 2012, pàg. L10. arXiv: 1204.3925. Bibcode: 2012ApJ...751L..10M. DOI: 10.1088/2041-8205/751/1/L10.
  119. 119,0 119,1 119,2 119,3 119,4 119,5 ; Haemmerlé, L.; Ekström, S.; Georgy, C.; Groh, J. «The past and future evolution of a star like Betelgeuse». Betelgeuse Workshop 2012. Edited by P. Kervella, 60, 2013, pàg. 17–28. arXiv: 1303.1339. Bibcode: 2013EAS....60...17M. DOI: 10.1051/eas/1360002.
  120. Groh, Jose H.; Meynet, Georges; Georgy, Cyril; Ekstrom, Sylvia «Fundamental properties of core-collapse Supernova and GRB progenitors: Predicting the look of massive stars before death». Astronomy & Astrophysics, 558, 2013, pàg. A131. arXiv: 1308.4681v1. Bibcode: 2013A&A...558A.131G. DOI: 10.1051/0004-6361/201321906.
  121. Wheeler, J. Craig. Cosmic Catastrophes: Exploding Stars, Black Holes, and Mapping the Universe. 2nd. Cambridge, UK: Cambridge University Press, 2007, p. 115–17. ISBN 978-0-521-85714-7. 
  122. Connelly, Claire «Tatooine's twin suns – coming to a planet near you just as soon as Betelgeuse explodes». News.com.au, 19-01-2011 [Consulta: 14 setembre 2012].
  123. Plait, Phil. «Is Betelgeuse about to blow?». Bad Astronomy. Discovery, 01-06-2010. [Consulta: 14 setembre 2012].
  124. O'Neill, Ian «Don't panic! Betelgeuse won't explode in 2012!». Discovery space news, 20-01-2011 [Consulta: 14 setembre 2012].
  125. Plait, Phil. «Betelgeuse and 2012». Bad Astronomy. Discovery, 21-01-2011. [Consulta: 14 setembre 2012].
  126. 126,0 126,1 126,2 «Betelgeuse». A: Oxford English Dictionary. 2nd. Oxford: Clarendon Press, 1989. ISBN 978-0-19-861186-8. 
  127. Likely the result of mistaking the l for an i. Ultimately, this led to the modern Betelgeuse.
  128. Bode, Johann Elert, (ed.). (1782) Vorstellung der Gestirne: auf XXXIV Kupfertafeln nach der Parisier Ausgabe des Flamsteadschen Himmelsatlas, Gottlieb August Lange, Berlin / Stralsund, pl. XXIV.
  129. Bode, Johann Elert, (ed.) (1801). Uranographia: sive Astrorum Descriptio, Fridericus de Harn, Berlin, pl. XII.
  130. 130,0 130,1 130,2 Schaaf, Fred. «Betelgeuse». A: The Brightest Stars. Hoboken, New Jersey: Wiley, 2008, p. 174–82. ISBN 978-0-471-70410-2. 
  131. Dibon-Smith, Richard. «Alpha Orionis (Betelgeuse )». The Constellations Web Page. [Consulta: 23 gener 2010].
  132. Error de citació: Etiqueta <ref> no vàlida; no s'ha proporcionat text per les refs amb l'etiqueta MWD
  133. Kanipe, Jeff. «SpaceWatch – A Star by Any Other Name», 30-06-2005. Arxivat de l'original el 22 maig 2009. [Consulta: 23 octubre 2009].
  134. Ridpath, Ian. The Monthly Sky Guide. 7th. Cambridge University Press, 2006, p. 8. ISBN 978-0-521-68435-4. 
  135. Kunitzsch, Paul «The Star Catalogue Commonly Appended to the Alfonsine Tables». Journal for the History of Astronomy, 17, 49, 1986, pàg. 89–98. Bibcode: 1986JHA....17...89K. DOI: 10.1177/002182868601700202.
  136. Kunitzsch, Paul. Arabische Sternnamen in Europa. Wiesbaden: Otto Harrassowitz, 1959. 
  137. 137,0 137,1 Kunitzsch, Paul; Smart, Tim. A Dictionary of Modern star Names: A Short Guide to 254 Star Names and Their Derivations. 2nd rev.. Cambridge, MA: Sky Publishing Corporation, 2006, p. 45. ISBN 978-1-931559-44-7. 
  138. «天文教育資訊網 2006 年 5 月 25 日». AEEA (Activities of Exhibition and Education in Astronomy), 25-05-2006.
  139. Ridpath, Ian. «Orion: Chinese associations». Star Tales. [Consulta: 24 juny 2012].
  140. ; Saori Ihara«Yowatashi Boshi; Stars that Pass in the Night» p. 2–17. Griffith Observer, octubre 1999. [Consulta: 25 juny 2012].
  141. Hōei Nojiri"Shin seiza jyunrei"p.19 ISBN 978-4-12-204128-8
  142. Henry, Teuira «Tahitian Astronomy: Birth of Heavenly Bodies». The Journal of the Polynesian Society, 16, 2, 1907, pàg. 101–04. JSTOR: 20700813.
  143. Brosch, Noah. Sirius Matters. Springer, 2008, p. 46. ISBN 978-1-4020-8318-1. 
  144. Milbrath, Susan. Star Gods of the Maya: Astronomy in Art, Folklore, and Calendars. Austin, Texas: University of Texas Press, 1999, p. 39. ISBN 978-0-292-75226-9. 
  145. Harney, Bill Yidumduma; Cairns, Hugh C. Dark Sparklers. Revised. Merimbula, New South Wales: Hugh C. Cairns, 2004, p. 139–40. ISBN 978-0-9750908-0-0. 
  146. Littleton, C. Scott. Gods, goddesses, and mythology. 1. Marshall Cavendish, 2005, p. 1056. ISBN 978-0-7614-7559-0. 
  147. Motz, Lloyd; Nathanson, Carol. The Constellations: An Enthusiast's Guide to the Night Sky. London, United Kingdom: Aurum Press, 1991, p. 85. ISBN 978-1-85410-088-7. 
  148. Cenev, Gjore «Macedonian Folk Constellations». Publications of the Astronomical Observatory of Belgrade, 85, 2008, pàg. 97–109. Bibcode: 2008POBeo..85...97C.
  149. Kelley, David H.; Milone, Eugene F.; Aveni, A.F. Exploring Ancient Skies: A Survey of Ancient and Cultural Astronomy. New York, New York: Springer, 2011, p. 307. ISBN 978-1-4419-7623-9. 
  150. Conley, Craig. Magic Words: A Dictionary. Weiser, 2008, p. 121. ISBN 978-1-57863-434-7 [Consulta: 22 setembre 2010]. 
  151. Tallant, Nicolla «Survivor recalls the night an apocalypse came to Whiddy». Independent Digital. Independent News & Media PLC, 15-07-2007 [Consulta: 10 juny 2011].
  152. «Black and Blue Bird», 05-07-2015. [Consulta: 30 gener 2016].
  153. Ford, Andrew. «Holst, the Mystic». A: Try Whistling This: Writings on Music. Collingwood, Victoria: Black Incorporated, 2012. ISBN 9781921870682. 

Enllaços externs[modifica]

  1. Mars and Orion Over Monument Valley Skyscape showing the relative brightness of Betelgeuse and Rigel.
  2. Orion: Head to Toe Breathtaking vista the Orion Molecular Cloud Complex from Rogelio Bernal Andreo.
  3. The Spotty Surface of Betelgeuse A reconstructed image showing two hotspots, possibly convection cells.
  4. Simulated Supergiant Star Freytag's "Star in a Box" illustrating the nature of Betelgeuse's "monster granules".
  5. Why Stars Twinkle Image of Betelgeuse showing the effect of atmospheric twinkling in a telescope.
  6. Betelgeuse explosion simulation Simulation of Betelgeuse explosion as seen from Earth