Complex de cadenes

De Viquipèdia
Dreceres ràpides: navegació, cerca

A àlgebra abstracta un conjunt consistent en estructures algebraiques Ai (ja siguin grups abelians, anells, mòduls, ...) i morfismes (segons sigui la categoria), es diu complex de cadenes o complex homològic si la construcció

satisfà per a tot n. Aquesta condició implica . Aquest concepte és clau per entendre el que és l'homologia.

Notació[modifica | modifica el codi]

El símbol s'utilitza per a designar al parell .

Homologia[modifica | modifica el codi]

Les estructures quocient

s'anomenen espais d'homologia del complex de cadenes .

Aquesta última construcció és l'origen de l'àlgebra homològica i té nombroses aplicacions en altres disciplines de la matemàtica com ara a la topologia algebraica, que la compta com una de les seves principals eines.

Morfisme entre complexos[modifica | modifica el codi]

El morfisme de complexos . La condició de morfisme de complexos demana que el diagrama sigui commutatiu.

Un morfisme (de grau zero) entre dos complexos i és un conjunt de morfismes entre les estructures algebraiques tals que . Simbòlicament indica el mateix.

Un morfisme de grau d correspon a una família de morfismes amb la mateixa propietat

Com a categoria[modifica | modifica el codi]

Des del punt de vista de teoria de categories tenim ben definida la categoria de complexos de cadenes amb els morfismes de complexos.

Una aplicació d'aquesta categoria és que les principals teories de la topologia algebraica com ara l'homologia singular són veritables functors, perquè assignen a un parell topològic (X, A) una família de grups abelians que formaran un complex de cadenes

i on una aplicació contínua entre parells topològics indueix un conjunt de morfismes

amb les propietats suficients per a considerar-los un morfisme de complexos.

Bibliografia[modifica | modifica el codi]

Vegeu també[modifica | modifica el codi]