Funció exponencial: diferència entre les revisions

De la Viquipèdia, l'enciclopèdia lliure
Contingut suprimit Contingut afegit
mCap resum de modificació
m Bot: Traient 48 enllaços interwiki, ara proporcionats per Wikidata a d:q168698
Línia 161: Línia 161:
{{ORDENA:Funcio Exponencial}} <!--ORDENA generat per bot-->
{{ORDENA:Funcio Exponencial}} <!--ORDENA generat per bot-->
[[Categoria:Funcions|exponencial]]
[[Categoria:Funcions|exponencial]]

[[af:Eksponensiële funksie]]
[[ar:دالة أسية]]
[[be:Паказнікавая функцыя]]
[[bg:Експоненциална функция]]
[[bn:সূচক ফাংশন]]
[[br:Argemmvac'henn]]
[[bs:Eksponencijalna funkcija]]
[[cs:Exponenciální funkce]]
[[da:Eksponentialfunktion]]
[[de:Exponentialfunktion]]
[[en:Exponential function]]
[[eo:Eksponenta funkcio]]
[[es:Función exponencial]]
[[et:Eksponentfunktsioon]]
[[fa:تابع نمایی]]
[[fi:Eksponenttifunktio]]
[[fr:Fonction exponentielle]]
[[he:אקספוננט]]
[[hi:चरघातांकी फलन]]
[[hu:Exponenciális függvény]]
[[id:Fungsi eksponensial]]
[[io:Exponentala]]
[[it:Funzione esponenziale]]
[[ja:指数関数]]
[[ka:მაჩვენებლიანი ფუნქცია]]
[[ko:지수 함수]]
[[la:Functio exponentialis]]
[[lt:Eksponentinė funkcija]]
[[ms:Fungsi eksponen]]
[[nl:Exponentiële functie]]
[[nn:Eksponentialfunksjon]]
[[no:Eksponentialfunksjon]]
[[pl:Funkcja wykładnicza]]
[[pms:Fonsion esponensial]]
[[pt:Função exponencial]]
[[ro:Funcție exponențială]]
[[ru:Показательная функция]]
[[simple:Exponential function]]
[[sk:Exponenciálna funkcia]]
[[sl:Eksponentna funkcija]]
[[sr:Експоненцијална функција]]
[[sv:Exponentialfunktion]]
[[th:ฟังก์ชันเลขชี้กำลัง]]
[[tr:Üstel fonksiyon]]
[[uk:Показникова функція]]
[[ur:اسی دالہ]]
[[vi:Hàm mũ]]
[[zh:指数函数]]

Revisió del 09:13, 9 març 2013

La funció exponencial creix lentament per les x negatives, val 1 quan la x és igual a 0, i creix ràpidament per les x positives .

La funció exponencial és una de les funcions més importants de les matemàtiques. S'escriu com exp(x) o ex, on e val aproximadament 2,71828183 i és la base del logaritme natural. Tota funció exponencial té per domini de definició el conjunt dels nombres reals i a més té un creixement exponencial. A més, com s'ha dit la funció exponencial és la funció inversa del logaritme natural, resultant així, un element imprescindible a l'hora de resoldre certs problemes . Aquesta funció es denota equivalentment com f (x) = ex o exp (x), on e és la base dels logaritmes naturals. Té la particularitat que si la seva base és el nombre d'Euler seva derivada és la mateixa funció

Com a funció de la variable x real, la gràfica d'ex sempre és positiva (al llarg de l'eix de les x) i creixent (d'esquerra a dreta). Mai arriba a tocar l'eix de les x, tot i que s'hi aproxima tant com es vulgui (això significa que l'eix de les x és un asímptota horitzontal de la gràfica). La seva funció inversa, el logaritme neperià, ln(x), està definit per tota x positiva.

Segons el context, el terme funció exponencial es refereix a qualsevol funció del tipus kax, on a és qualsevol nombre real positiu i s'anomena base. Aquest article tractarà només de la funció exponencial en base e, la constant d'Euler.

Més en general, la variable x pot ser real o complexa, o fins i tot qualsevol element matemàtic totalment diferent.

Propietats

Utilitzant logaritmes neperians, es poden generalitzar el concepte de funció exponencial. La funció

definida per tot a > 0, i per tot x real, s'anomena la funció exponencial de base a.

Fixeu-vos que l'anterior equació també és vàlida per a = e, ja que

Les funcions exponencials compleixen les següents propietats, per tot a i b reals positius i per tot x i y reals:

Les expressions que contenen fraccions i arrels aritmètiques es poden simplificar utilitzant la notació exponencial perquè:

i per tot a > 0, b real, i n > 1 enter:

Derivades i equacions diferencials

La importància de les funcions exponencials en matemàtiques i les ciències ve principalment de les propietats de llurs derivades. En particular,

És a dir, la derivada d'ex és ella mateixa. Aquesta és una propietat única dins de les funcions reals. Altres maneres de dir el mateix són:

  • La pendent de la gràfica al punt x és igual al valor de la funció a x.
  • La funció exponencial és solució de l'equació diferencial .

De fet, moltes equacions diferencials donen lloc a funcions exponencials, com ara l'equació de Schrödinger, l'equació de Laplace i les equacions del moviment harmònic simple.

Per a les funcions exponencials amb altres bases:

Tenim que qualsevol funció exponencial és un múltiple constant de la seva derivada.

Si el grau de creixement o de decreixement d'una variable és proporcional a la seva dimensió llavors podem escriure la variable com el producte d'una constant per la funció exponencial del temps.

A més a més, per qualsevol funció diferenciable f (x), tenim, per la regla de la cadena:

.

Definició formal

La funció exponencial ex es pot definir de diverses maneres equivalents fent servir sèries infinites. En particular es pot definir com una sèrie de potències:

o com el límit d'una successió:

En aquestes definicions, significa factorial d'n, i x pot ser un nombre real, un nombre complex, un element d'una àlgebra de Banach o un element d'un cos de nombres p-àdics.

El terme d'error d'aquest límit-l'expressió és descrit per

on, el grau del polinomi (enx) en el terme amb el denominador' nk es 2k.

Valor numèric

Per obtenir el valor numèric de la funció exponencial, la sèrie infinita es pot reescriure com:

Aquesta expressió convergeix ràpidament si podem assegurar que x < 1. Per assegurar-ho, podem fer servir la següent identitat.

  • On és la part entera d'
  • on és la part decimal d'
  • Per tant, és sempre més petit que 1 i la suma d' i és .

El valor de la constant ez es pot calcular per endavant multiplicant e per ella mateixa z vegades.

Al pla complex

Quan es considera com una funció definida al pla complex, la funció exponencial conserva les propietats importants següents

per a tot z i w.

La funció exponencial pot ser definida com una funció holomorfa en el pla complex de diferents maneres. Alguna d'elles són simples extensions de les fórmules que s'utilitzen per definir-la en el domini dels nombres reals. Específicament la forma més normal de definir-la per el domini de nombres complexos és mitjançant la sèrie de potències, on el valor real x es substitueix per la variable complexa z:

Una funció holomorfa periòdica amb període imaginari , es pot escriure com

on a i b són valors reals. Aquesta fórmula relaciona la funció exponencial amb les funcions trigonomètriques i les funcions hiperbòliques. Així veiem que tota funció elemental excepte els polinomis prové d'una funció exponencial.

Vegeu també la fórmula d'Euler.

Extenent el logaritme a arguments complexos s'obté una funció multivalorada, ln(z), és a dir, per a un element z obtenim una imatge amb més d'un element. Podem definir una exponenciació més general:

per a tot z i w complexos, que també és una funció multivalorada. Les propietats exponencials establertes anteriorment és mantenen per a aquesta funció si tenim present que es tracta d'una funció multivalorada.

La funció exponencial transforma una recta del pla complex en una espiral logarítmica del pla complex amb centre a l'origen de coordenades. Si la recta és paral·lela a l'eix real, l'espiral no arriba a tocar-se; i si la recta és paral·lela a l'eix imaginari, l'espiral degenera en un cercle.

Matrius i àlgebres de Banach

La definició de la funció exponencial donada anteriorment també és vàlida per a tota àlgebra de Banach, i en particular per matrius quadrades (en aquest cas la funció és anomenada la matriu exponencial). Tenim que:

és invertible amb inversa
la derivada de en el punt és l'aplicació lineal que envia a .

En el context d'àlgebres de Banach no commutatives, tals com àlgebres de matrius o d'operadors en espais de Banach o de Hilbert, la funció exponencial sovint es considera com una funció amb argument real:

on A és un element fixat de l'àlgebra i t és un nombre real. Aquesta funció té les importants propietats

Calcul ez per al complex z

Si , on x i y son nombres reals, llavors

Exemple d'aplicació de la funció exponencial

És possible mesurar la concentració d'alcohol en la sang d'una persona. Investigacions mèdiques recents van demostrar que el risc de tenir un accident automobilístic pot ser representat mitjançant l'equació:

on 'x' és la concentració d'alcohol a la sang i 'k' una constant.

A les àlgebres de Lie

Doble funció exponencial

El terme doble funció exponencial contè dos aspectes:

  • una funció amb dues funcions exponencials, amb diferents exponents
  • una funció , que creix molt més rapidament que una funció exponensial.

Uns exemples de doble funció exponencial podien ser:

  • El Nombre de Fermat, que es generat per la funció
  • El Nombre Doble de Mersenne, que es generat per la funció