Espai compacte: diferència entre les revisions

De la Viquipèdia, l'enciclopèdia lliure
Contingut suprimit Contingut afegit
m Arreglat error menor tipogràfic.
m Corregit: fitat. No obstant això, en > fitat. Tanmateix, en
Línia 19: Línia 19:
A més, s'ha de <math> K </math> serà sempre tancat i acotat.
A més, s'ha de <math> K </math> serà sempre tancat i acotat.


El [[teorema de Heine-Borel]] dóna una caracterització útil en els [[espais vectorials normats]] de dimensió finita: <math> K </math> és compacte si i només si és tancat i fitat. No obstant això, en dimensió infinita, això no és veritat, i, de fet, en aquest context la bola unitària tancada mai serà compacta, pel mateix{{què}}, és molt més difícil verificar compacitat. Un resultat important en els espais de funcions contínues és el [[teorema de Arzelá-Ascoli]].
El [[teorema de Heine-Borel]] dóna una caracterització útil en els [[espais vectorials normats]] de dimensió finita: <math> K </math> és compacte si i només si és tancat i fitat. Tanmateix, en dimensió infinita, això no és veritat, i, de fet, en aquest context la bola unitària tancada mai serà compacta, pel mateix{{què}}, és molt més difícil verificar compacitat. Un resultat important en els espais de funcions contínues és el [[teorema de Arzelá-Ascoli]].


== Importància dels Conjunts Compactes ==
== Importància dels Conjunts Compactes ==

Revisió del 15:22, 4 març 2016

En topologia, un subconjunt d'un espai topològic es diu compacte si tot recobriment obert seu té un subrecobriment finit, és a dir, si per a tot tal que són tots oberts i , hi ha finit tal que .

Notar que, en particular, podria ser . En aquest cas es parla d'un espai compacte . Es verifica llavors que és compacte si i només si és un espai compacte per a la topologia traça.

El teorema de Heine-Borel estableix que els subconjunts compactes de són els conjunts tancats i acotats.

Un resultat important diu que és compacte si i només si tota xarxa continguda en té un punt d'acumulació.

Algunes Propietats

Es compleix que si és varietat afí, aleshores és connex per camins. Es compleix a més que tot subconjunt acotat d'un precompacto serà també paracompacto.

Compacitat en Espais Mètric

Si s'ha de és un espai mètric, llavors, per , les següents proposicions són totes equivalents:

  1. és compacte
  2. és seqüencialment compacte
  3. és complet i totalment tancat

A més, s'ha de serà sempre tancat i acotat.

El teorema de Heine-Borel dóna una caracterització útil en els espais vectorials normats de dimensió finita: és compacte si i només si és tancat i fitat. Tanmateix, en dimensió infinita, això no és veritat, i, de fet, en aquest context la bola unitària tancada mai serà compacta, pel mateix[Cal aclariment], és molt més difícil verificar compacitat. Un resultat important en els espais de funcions contínues és el teorema de Arzelá-Ascoli.

Importància dels Conjunts Compactes

Els conjunts compactes tenen gran importància en diversos resultats de l'anàlisi, sent un dels més importants el teorema de Weierstrass: tota funció real contínua definida en un espai compacte assoleix el seu màxim i el mínim.

Un altre resultat important és el teorema de Heine, que indica que tota funció contínua el domini sigui un conjunt compacte, serà uniformement contínua.

Vegeu també