Vés al contingut

Grigori Perelman

De la Viquipèdia, l'enciclopèdia lliure
(S'ha redirigit des de: Grigori Iàkovlevitx Perelman)
Plantilla:Infotaula personaGrigori Perelman

Grigori Perelman el 1993 Modifica el valor a Wikidata
Nom original(ru) Григорий Яковлевич Перельман Modifica el valor a Wikidata
Biografia
Naixement13 juny 1966 Modifica el valor a Wikidata (58 anys)
Sant Petersburg (Rússia) Modifica el valor a Wikidata
ResidènciaKupchino (en) Tradueix Modifica el valor a Wikidata
FormacióInstitut Steklov de Matemàtiques, Secció de Sant Petersburg - candidat de Ciències en Física i Matemàtiques (–1990)
Facultat de Matemàtiques i Mecànica de la Universitat Estatal de Sant Petersburg (1982–1987)
Liceu Físic i Matemàtic 239 Modifica el valor a Wikidata
Director de tesiAleksandr Danílovitx Aleksàndrov i Yuri Burago Modifica el valor a Wikidata
Activitat
Camp de treballGeometria diferencial, topologia, matemàtiques, geometria riemanniana i Topologia geomètrica Modifica el valor a Wikidata
Ocupaciómatemàtic Modifica el valor a Wikidata
OcupadorInstitut Steklov de Matemàtiques, Secció de Sant Petersburg (–2005)
Universitat de Stony Brook
Institut Courant de Ciències Matemàtiques
Universitat de Califòrnia a Berkeley Modifica el valor a Wikidata
Interessat enMúsica clàssica Modifica el valor a Wikidata
ProfessorsAleksandr Danílovitx Aleksàndrov Modifica el valor a Wikidata
Participà en
Olimpíada Internacional de Matemàtiques
Olimpíada Russa per a Estudiants de Matemàtiques Modifica el valor a Wikidata
Obra
Obres destacables
Família
ParesYakov Perelman Modifica el valor a Wikidata  i Lyubov Steingolts Modifica el valor a Wikidata
GermansElena Perelman Modifica el valor a Wikidata
Premis
Premi de la Societat matemàtica de Sant Petersburg (1991), acceptat
Premi EMS (1996), rebutjat
Medalla Fields (2006), rebutjat
Premi dels problemes del mil·lenni (2010), rebutjat

Goodreads character: 995621

Grigori Perelman Grigori Perelman (rus: Григорий Яковлевич Перельман) (Sant Petersburg, 13 de juny de 1966), nom complet amb patronímic Grigori Iàkovlevitx Perelman, rus: Григорий Яковлевич Перельман, és un matemàtic rus. El seu treball sobre el flux de Ricci, el va conduir a demostrar el 2003 la conjectura de Poincaré, un dels problemes fonamentals de les matemàtiques contemporànies des de 1904, mitjançant la revisió del programa de Hamilton. Aquesta fita li va donar reputació internacional i nombroses distincions que ell ha rebutjat sistemàticament.

Investigador de l'Institut de matemàtiques Steklov de Sant Petersburg, la personalitat esquerpa de Perelman ha contribuït a alimentar els debats sobre els seus decisius treballs, que va presentar en una sèrie de conferències als Estats Units d'Amèrica l'any 2003.

El seu resultat sobre la conjectura de Poincaré va ser reconegut oficialment per la comunitat matemàtica que va proposar atorgar-li la medalla Fields el 22 d'agost de 2006 al congrés internacional de matemàtiques per "les seves contribucions a la geometria i les seves idees revolucionàries en l'estructura analítica i geomètrica del flux de Ricci". Però Perelman la va refusar[1][2] malgrat que és considerada la més alta distinció per a un matemàtic. Va qualificar aquest premi de «mancat d'interès».

La seva germana és la també matemàtica i pintora Elena Perelman.

Joventut i formació

[modifica]

Nascut en una família d'origen jueu,[3] Grigori Perelman estudià a l'Escola secundària n° 239 de Leningrad, centre reconegut internacionalment per la seva selectivitat extrema i el seu ambiciós programa d'aprenentatge de matemàtiques i de física teòrica. Va ser distingit el 1982, quan encara era estudiant a l'Institut, amb la medalla d'or per obtenir una puntuació perfecta a les Olimpíades de matemàtiques (42 punts de 42 possibles).

Va obtenir el doctorat (anomenat Candidat de Ciència a l'URSS) a finals dels 1980, a la Facultat de Matemàtiques i Mecànica de la Universitat de Leningrad, una de les universitats més reputades de l'antiga Unió Soviètica. Les seves recerques se centraren en les superfícies en sella en espais euclidians. També cultivà la seva afició a tocar el violí, amb un nivell destacable, i jugar al ping-pong.

Després de rebre el seu diploma, Perelman treballà a l'Institut de Matemàtiques de Steklov, amb Aleksandr Danílovitx Aleksàndrov i Yuri Dmitrievich Burago, i més tard col·laboraria amb diverses universitats de la Unió Soviètica abans de tornar a l'Institut Steklov.

A final dels anys 80, treballà a l'Institut Courant de la Universitat de Nova York, i més tard a la Universitat de Berkeley. A començaments del 90 retornà a Sant Petersburg i pràcticament desaparegué del món acadèmic, deixant de publicar cap més treball durant prop de 10 anys.

Fins al 2002, Perelman era conegut per les seves aportacions en teoremes de comparació en geometria riemanniana. Entre els seus notables assoliments destaca la demostració de la conjectura de Soul.

El 2002 publicà a Internet un breu article de 39 pàgines. Un procediment inusual, ja que no seguia la revisió "per iguals" pròpia de les publicacions científiques. Així posava sobre la taula els fonaments de la demostració de la conjectura de Poincaré que va completar publicant dos articles més per la mateixa via. Abandonà després el seu silenci en impartir nombroses conferències sobre el tema.

El problema

[modifica]

La conjectura de Poincaré, proposada pel matemàtic francès Henri Poincaré el 1904, era el problema sense resoldre més famós de la topologia. De manera resumida, la conjectura indica que si una varietat topològica tridimensional tancada és simplement connexa (és a dir, cada llaç en la varietat es pot deformar en un punt), aleshores la varietat és homeomorfa a l'esfera tridimensional. S'havia demostrat que el resultat anàleg és cert en dimensions majors; però el cas de varietats tridimensionals resultava ser el més difícil de tots, ja que quan "es manipula" topològicament una varietat tridimensional hi ha massa poques dimensiones per a moure "regions problemàtiques".

La demostració de Perelman

[modifica]

Perelman modificà el programa de Richard Hamilton per a la demostració de la conjectura, en el qual la idea central era la noció del flux de Ricci. Es tractava, segons Hamilton de formular un "procés dinàmic" en el que una varietat tridimensional donada es transformi geomètricament de manera que aquest procés de distorsió sigui governat per una equació diferencial anàloga a l'equació de la calor. Equació que descriu el comportament de quantitats escalars com la temperatura; afirma que les concentracions de temperatura elevada es dispersen fins que s'arriba a una temperatura uniforme al llarg de l'objecte. Similarment, el flux de Ricci descriu el comportament d'una quantitat tensorial, el tensor de curvatura de Ricci. La idea de Hamilton és que amb el flux de Ricci, les concentracions de gran curvatura es dispersaran fins que s'assoleixi una curvatura uniforme sobre tota la varietat tridimensional. Si és així, si es comença amb qualsevol varietat tridimensional i es permet flux de Ricci, eventualment s'obtindria en principi una "forma normal". D'acord amb William Thurston, aquesta forma normal ha de ser una d'un petit nombre de possibilitats, cada una amb un diferent sabor de geometria, anomenades geometries de models de Thurston.

És similar a formular un procés dinàmic que gradualment "pertorbi" una matriu quadrada determinada, i que resultaria després d'un temps finit en la seva forma racional canònica. La idea de Hamilton havia despertat gran interès però no s'havia aconseguit demostrar que el procés no s'encallaria desenvolupant "singularitats", fins que els càlculs de Perelman esbossaren un programa per a superar aquests obstacles. Segons Perelman, una modificació del flux de Ricci estàndard, el "flux de Ricci amb cirurgia", pot eliminar sistemàticament regions singulars a mesura que es desenvolupen, de manera controlada. Se sap que les singularitats han de donar-se en molts casos. Tanmateix, els matemàtics esperen que, assumint que la conjectura de geometrització sigui certa, qualsevol singularitat que es desenvolupi en un temps finit s'estaria essencialment "comprimint" al llarg de certes esferes que corresponen a la descomposició en primers de la 3-varietat. Si això es compleix, qualssevol singularitats de "temps infinit" han de resultar de determinades pecas col·lapsants de la descomposició JSJ. El treball de Perelman demostra en principi aquesta afirmació i per tant la conjectura de geometrització.

Distincions i reconeixements

[modifica]

El 22 d'agost de 2006, Perelman havia de rebre la medalla Fields, en el Congrés internacional de matemàtiques.[4]

Però Perelman no va ni assistir a la cerimònia i va rebutjar la medalla. El 1996, ja havia refusat el prestigiós premi de la Societat europea de matemàtiques.[5] Segons algunes fonts, com el seu company Alexandre Grothendieck, Perelman ara viu en una difícil situació econòmica a casa la seva mare a Sant Petersburg i es comunica només de tant en tant amb alguns col·legues per correu electrònic

El 18 de març del 2010 el Clay Mathematics Institute va anunciar la concessió del primer dels premis del mil·lenni a Grigori Perelman per la resolució de la conjectura de Poincaré.

Vegeu també

[modifica]

Referències

[modifica]
  1. (anglès) « Maths genius declines top prize », BBC News, 21 d'agost de 2006
  2. (castellà) « Geni Matemàtiques declina premi  »
  3. « World's top maths genius jobless and living with mother » Arxivat 2006-11-19 a Wayback Machine. in The Daily Telegraph, 20 d'agost de 2006
  4. (anglès) Comunicat oficial de l'ICM Arxivat 2012-11-03 a Wayback Machine.  PDF
  5. «Maths genius declines top prize». BBC News, 22-08-2006.

Enllaços externs

[modifica]