Sèrie de Mercator

De Viquipèdia
Salta a la navegació Salta a la cerca

En matemàtiques, la sèrie de Mercator o sèrie de Newton–Mercator és la sèrie de Taylor del logaritme natural:

Escrita en notació de sumatori,

La sèrie convergeix al logaritme natural (desplaçat en 1) quan −1 < x ≤ 1.

La sèrie va ser descoberta independentment per Nicholas Mercator, Isaac Newton i Gregory Saint-Vincent. Va ser publicada per primera vegada per Mercator, en el seu tractat Logarithmo-technica de 1668.

Derivació[modifica]

La sèrie pot ser obtinguda a partir del teorema de Taylor, mitjançant el càlcul inductiu de la enésima derivada del ln x en x = 1, començant amb:

Alternativament, es pot començar amb la sèrie geomètrica finita (t ≠ −1)

que dóna

Se segueix que

i per integració terme a terme,

Si −1 < x ≤ 1, el terme resta tendeix a 0 quan . Aquesta expressió pot ser integrada iterativament k vegades més per obtenir:

on

i

són polinomis en x.[1]

Casos especials[modifica]

Prenent x = 1 en la sèrie de Mercator s'obté la sèrie harmònica alternada.

Sèrie complexa[modifica]

La sèrie de potències complexa:

és la sèrie de Taylor de la funció complexa -log(1 - z), on log denota la branca principal del logaritme complex. Aquesta sèrie precisament convergeix per a tot nombre complex |z| ≤ 1, z ≠ 1. De fet, es pot veure mitjançant el criteri de d'Alembert, que aquesta té radi de convergència igual a 1, per tant, convergeix absolutament en tot disc B(0, r) amb radi r < 1. A més, aquesta convergeix en tot disc foradat , amb δ > 0. Això és conseqüència immediata de la identitat algebraica:

Observi's que el costat dret és uniformement convergent en tot el disc tancat unitat.

Referències[modifica]

  1. Medina, Luis A.; Moll, Victor H.; Rowland, Eric S. «Iterated primitives of logarithmic powers» (en anglès). , 2009 [Consulta: 30 agost 2017].

Bibliografia[modifica]