Trajectòria hiperbòlica

De Viquipèdia
Salta a la navegació Salta a la cerca
El camí blau en aquesta imatge és un exemple d'una trajectòria hiperbòlica
En el quadrant inferior dret es descriu una trajectòria hiperbòlica.

En mecànica celeste una trajectòria hiperbòlica és la trajectòria de qualsevol objecte al voltant d'un cos central amb velocitat suficient per escapar de l'atracció gravitacional de l'objecte central. El nom deriva del fet que segons la teoria newtoniana tal òrbita té la forma d'una hipèrbola. Més tècnicament, una trajectòria hiperbòlica té una excentricitat més gran que aquesta.

Sota suposicions estàndards un cos que viatja segons aquesta trajectòria s'allunya fins a l'infinit, arribant-hi amb una velocitat d'excés hiperbòlica relativa al cos central.  Semblantment a les trajectòries parabòliques, totes les trajectòries hiperbòliques són també trajectòries d'escapament. L'energia específica orbital d'una trajectòria hiperbòlica és positiva.

Durant l'ús d'assistència gravitatòria, la trajectòria del cos orbitant el planeta pot ser descrita amb una trajectòria hiperbòlica.

Velocitat d'excés hiperbòlica[modifica]

Sota suposicions estàndards, un cos que viatja en una trajectòria hiperbòlica arriba a l'infinit a una velocitat orbital anomenada velocitat d'excés hiperbòlica () que ve donada per la següent fórmula:

On:

La velocitat d'excés hiperbòlica està relacionada amb l'energia específica orbital:

s'utilitza al planejar missions interplanetàries.

Velocitat[modifica]

Sota suposicions estàndards la velocitat orbital () d'un cos que viatja en una trajectòria hiperbòlica és:

On:

Sota suposicions estàndards, a qualsevol posició en l'òrbita es manté la següent relació entre la velocitat orbital, la velocitat d'escapament i la velocitat d'excés hiperbòlica:

Angle entre aproximació i sortida[modifica]

Anomenant l'angle entre aproximació i sortida (entre asímptotes) :

and

On:

  • és l'excentricitat de l'òrbita, la qual és més gran que 1 a les trajectòries hiperbòliques.

Periàpside[modifica]

La distància mínima entre els cos i el cos central (periàpside) és:

 

Energia[modifica]

Sota suposicions estàndards, l'energia específica orbital \epsilon\, d'un cos en aquest tipus d'òrbita és més gran que zero i  l'equació de conservació d'energia orbitària per aquesta classe d'òrbita és:

On:

  • és la velocitat orbital 
  • és la distància radial entre el cos orbitant i el cos central
  • és el semieix major negatiu,
  • és el paràmetre gravitacional estàndard.

Referències[modifica]

  • Vallado, David A. Fundamentals of Astrodynamics and Applications, Third Edition. Hawthorne, CA.: Hawthorne Press, 2007. ISBN 978-1-881883-14-2.