Vés al contingut

Polítop: diferència entre les revisions

14 bytes afegits ,  fa 12 anys
cap resum d'edició
Cap resum de modificació
Cap resum de modificació
[[Fitxer:Dice analogy- 1 to 5 dimensions.svg|right|]]
Un '''polítop''' és un conjunt de punts de l'espai R<sup>n</sup> limitat per hiperplans.<ref name="GEC" /> En [[geometria]] polítop significa, en primer lloc, la generalització a qualsevol dimensió d'un polígon bidimensional, o un [[poliedre]] tridimensional. A més, aquest terme és utilitzat en diversos conceptes [[matemàtic]]s relacionats. El seu ús és anàleg al de [[quadrat]], que pot usar-se per referir-se a una regió del pla de forma quadrada, o només per als seus límits, o encara per una mera llista dels seus vèrtexs i costats juntament amb alguna informació sobre la forma en què estan connectats. La noció de politoppolítop generalitza la de [[polígon]] i la de [[políedre]]. De fet, els politopspolítops de ℝ2R<sup>2</sup> són els polígons i els politopspolítops de ℝ3R3 són els políedres. Un exemple de politoppolítop a ℝ4R<sup>4</sup> és el tesseractis, que és l'hipercub de quatre dimensions.<ref name="GEC">{{citar web |url=http://www.enciclopedia.cat/fitxa_v2.jsp?NDCHEC=0133342&BATE=politop|títol=Polítop |consulta= 27 de setembre de 2010 |autor= |data= |obra= Enciclopèdia.cat|editor= Enciclopèdia Catalana, SAU|arxiuurl= |arxiudata= |llengua=català }}</ref>
Diu analogy-1 to 5 dimensions.svg
 
El terme va ser encunyat pel matemàtic Hoppe, en [[alemany]], i va ser generalitzat per [[Alicia Boole Stott]], filla del matemàtic i filòsof irlandès [[George Boole]].<ref> A. Boole Stott. ''Geometrical deduction of semiregular from regular polytopes and space fillings'', Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910</ref> Els sòlids platònics, o polítops regulars de tres dimensions, van ser objecte central d'estudi dels matemàtics de l'[[antiga Grècia]] –ben tractada als ''Elements'' d'Euclides–[[Euclides]]–, probablement a causa de les seves qualitats estètiques intrínseques. En temps moderns, els polítops i els seus conceptes relacionats tenen una aplicació important en gràfics per [[ordinador]], [[optimització]] i molts altres camps.
 
== Referències ==
60.430

modificacions