Fitxer:QHO-catstate-even3-animation-color.gif
El contingut de la pàgina no s'admet en altres llengües.
Aparença
De la Viquipèdia, l'enciclopèdia lliure
QHO-catstate-even3-animation-color.gif (300 × 200 píxels, mida del fitxer: 411 Ko, tipus MIME: image/gif, en bucle, 150 fotogrames, 7,5 s)
Aquest fitxer i la informació mostrada a continuació provenen del dipòsit multimèdia lliure Wikimedia Commons. Vegeu la pàgina original a Commons |
Resum
DescripcióQHO-catstate-even3-animation-color.gif |
English: Animation of the quantum wave function of a Schrödinger cat state of α=3 in a Quantum harmonic oscillator. The probability distribution is drawn along the ordinate, while the phase is encoded by color. The two coherent contributions interfere in the center which is characteristic for a cat-state. |
Data | |
Font |
Treball propi Aquesta GIF imatge rasteritzada ha estat creada amb Matplotlib. |
Autor | Geek3 |
Altres versions | QHO-catstate-even3-animation.gif |
Source Code
The plot was generated with Matplotlib.
Python Matplotlib source code |
---|
#!/usr/bin/python
# -*- coding: utf8 -*-
from math import *
import matplotlib.pyplot as plt
from matplotlib import animation, colors, colorbar
import numpy as np
import colorsys
from scipy.interpolate import interp1d
import os, sys
plt.rc('path', snap=False)
plt.rc('mathtext', default='regular')
# image settings
fname = 'QHO-catstate-even3-animation-color'
width, height = 300, 200
ml, mr, mt, mb, mh, mc = 35, 19, 22, 45, 12, 6
x0, x1 = -6.5, 6.5
y0, y1 = 0.0, 1.2
nframes = 150
fps = 20
# physics settings
alpha0 = 3.0
omega = 2*pi
def color(phase):
hue = (phase / (2*pi) + 2./3.) % 1
light = interp1d([0, 1, 2, 3, 4, 5, 6], # adjust lightness
[0.64, 0.5, 0.55, 0.48, 0.70, 0.57, 0.64])(6 * hue)
hls = (hue, light, 1.0) # maximum saturation
rgb = colorsys.hls_to_rgb(*hls)
return rgb
def coherent(alpha, x, omega, t, l=1.0):
# Definition of coherent states
# https://en.wikipedia.org/wiki/Coherent_states
psi = (pi*l**2)**-0.25 * np.exp(
-0.5/l**2 * (x - sqrt(2)*l * alpha.real)**2
+ 1j*sqrt(2)/l * alpha.imag * x
+ 0.5j * (alpha0**2*sin(2*omega*t) - omega*t))
return psi
def animate(nframe):
print str(nframe) + ' ',; sys.stdout.flush()
t = float(nframe) / nframes * 0.5 # animation repeats after t=0.5
alpha = e ** (-1j * omega * t) * alpha0
ax.cla()
ax.grid(True)
ax.axis((x0, x1, y0, y1))
x = np.linspace(x0, x1, int(ceil(1+w_px)))
x2 = x - px_w/2.
# Definition of cat states in terms of coherent states:
# https://en.wikipedia.org/wiki/Cat_state
psi = coherent(alpha, x, omega, t) + coherent(-alpha, x, omega, t)
psi /= sqrt(2 * (1 + exp(-2*alpha0**2)))
# Let's cheat a bit: discard the constant phase from the zero-point energy!
# This will reduce the period from T=2*(2pi/omega) to T=0.5*(2pi/omega)
# and allow fewer frames and less file size for repetition.
# For big alpha the change is hardly visible
psi *= np.exp(0.5j * omega * t)
y = np.abs(psi)**2
psi2 = coherent(alpha, x2, omega, t) + coherent(-alpha, x2, omega, t)
psi2 *= np.exp(0.5j * omega * t)
phi = np.angle(psi2)
# plot color filling
for x_, phi_, y_ in zip(x, phi, y):
ax.plot([x_, x_], [0, y_], color=color(phi_), lw=2*0.72)
ax.plot(x, y, lw=2, color='black')
ax.set_yticks(ax.get_yticks()[:-1])
# create figure and axes
plt.close('all')
fig, ax = plt.subplots(1, figsize=(width/100., height/100.))
bounds = [float(ml)/width, float(mb)/height,
1.0 - float(mr+mc+mh)/width, 1.0 - float(mt)/height]
fig.subplots_adjust(left=bounds[0], bottom=bounds[1],
right=bounds[2], top=bounds[3], hspace=0)
w_px = width - (ml+mr+mh+mc) # plot width in pixels
px_w = float(x1 - x0) / w_px # width of one pixel in plot units
# axes labels
fig.text(0.5 + 0.5 * float(ml-mh-mc-mr)/width, 4./height,
r'$x\ \ [(\hbar/(m\omega))^{1/2}]$', ha='center')
fig.text(5./width, 1.0, '$|\psi|^2$', va='top')
# colorbar for phase
cax = fig.add_axes([1.0 - float(mr+mc)/width, float(mb)/height,
float(mc)/width, 1.0 - float(mb+mt)/height])
cax.yaxis.set_tick_params(length=2)
cmap = colors.ListedColormap([color(phase) for phase in
np.linspace(0, 2*pi, 384, endpoint=False)])
norm = colors.Normalize(0, 2*pi)
cbar = colorbar.ColorbarBase(cax, cmap=cmap, norm=norm,
orientation='vertical', ticks=np.linspace(0, 2*pi, 3))
cax.set_yticklabels(['$0$', r'$\pi$', r'$2\pi$'], rotation=90)
fig.text(1.0 - 10./width, 1.0, '$arg(\psi)$', ha='right', va='top')
plt.sca(ax)
# start animation
if 0 != os.system('convert -version > ' + os.devnull):
print 'imagemagick not installed!'
# warning: imagemagick produces somewhat jagged and therefore large gifs
anim = animation.FuncAnimation(fig, animate, frames=nframes)
anim.save(fname + '.gif', writer='imagemagick', fps=fps)
else:
# unfortunately the matplotlib imagemagick backend does not support
# options which are necessary to generate high quality output without
# framewise color palettes. Therefore save all frames and convert then.
if not os.path.isdir(fname):
os.mkdir(fname)
fnames = []
for frame in range(nframes):
animate(frame)
imgname = os.path.join(fname, fname + '{:03d}'.format(frame) + '.png')
fig.savefig(imgname)
fnames.append(imgname)
# compile optimized animation with ImageMagick
cmd = 'convert -loop 0 -delay ' + str(100 / fps) + ' '
cmd += ' '.join(fnames) # now create optimized palette from all frames
cmd += r' \( -clone 0--1 \( -clone 0--1 -fill black -colorize 100% \) '
cmd += '-append +dither -colors 255 -unique-colors '
cmd += '-write mpr:colormap +delete \) +dither -map mpr:colormap '
cmd += '-alpha activate -layers OptimizeTransparency '
cmd += fname + '.gif'
os.system(cmd)
for fnamei in fnames:
os.remove(fnamei)
os.rmdir(fname)
|
Llicència
Jo, el titular dels drets d'autor d'aquest treball, el public sota les següents llicències:
S'autoritza la còpia, la distribució i la modificació d'aquest document sota els termes de la llicència de documentació lliure GNU versió 1.2 o qualsevol altra versió posterior que publiqui la Free Software Foundation; sense seccions invariants, ni textos de portada, ni textos de contraportada. S'inclou una còpia d'aquesta llicència en la secció titulada GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Aquest fitxer està subjecte a la llicència de Creative Commons Reconeixement 3.0 No adaptada.
- Sou lliure de:
- compartir – copiar, distribuir i comunicar públicament l'obra
- adaptar – fer-ne obres derivades
- Amb les condicions següents:
- reconeixement – Heu de donar la informació adequada sobre l'autor, proporcionar un enllaç a la llicència i indicar si s'han realitzat canvis. Podeu fer-ho amb qualsevol mitjà raonable, però de cap manera no suggereixi que l'autor us dóna suport o aprova l'ús que en feu.
Podeu seleccionar la llicència que vulgueu.
Elements representats en aquest fitxer
representa l'entitat
Algun valor sense element de Wikidata
20 set 2015
Historial del fitxer
Cliqueu una data/hora per veure el fitxer tal com era aleshores.
Data/hora | Miniatura | Dimensions | Usuari/a | Comentari | |
---|---|---|---|---|---|
actual | 22:46, 10 oct 2015 | 300 × 200 (411 Ko) | Geek3 | better compression | |
14:06, 4 oct 2015 | 300 × 200 (577 Ko) | Geek3 | legend added | ||
00:41, 21 set 2015 | 300 × 200 (572 Ko) | Geek3 | phase correction | ||
22:34, 20 set 2015 | 300 × 200 (577 Ko) | Geek3 | {{Information |Description ={{en|1=Animation of the quantum wave function of a Schrödinger cat state of α=3 in a Quantum harmonic oscillator. The [[:en:Probability distrib... |
Ús del fitxer
La pàgina següent utilitza aquest fitxer:
Ús global del fitxer
Utilització d'aquest fitxer en altres wikis:
- Utilització a de.wikibooks.org
- Utilització a en.wikipedia.org