Hipèrbola

De Viquipèdia
Jump to navigation Jump to search
Hipèrbola

Una hipèrbola es defineix com el lloc geomètric dels punts del pla per als quals és constant la diferència de les distàncies a dos punts fixos denominats focus.

La forma més freqüent d'una hipèrbola és la següent:

La hipèrbola és la corba cònica oberta formada per la intersecció d'una superfície cònica amb un pla paral·lel a l'eix del con.

Asímptotes[modifica]

Una asímptota és una recta que, en prolongar-la indefinidament, s'acosta cada vegada més a la gràfica de la corba, però no arriba mai a tocar-la. Això passa perquè en les asímptotes les gràfiques no existeixen.

Continuïtat i discontinuïtat[modifica]

Les representacions d'hipèrboles poden ser diferents, ja siguin contínues o discontínues. La diferència és que quan es podrà representar sense aixecar el llapis del paper la gràfica serà contínua i quan s'hagi d'aixecar el llapis del paper per força serà discontínua

Equacions de la hipèrbola[modifica]

Hipèrbola equilàtera

Equacions en coordenades cartesianes[modifica]

  • L'equació d'una hipèrbola centrada en el punt (0,0) és:

on a i b són els semieixos major i menor.

  • Equació amb centre arbitrari:

on és el centre

Equacions en coordenades polars[modifica]

Equacions paramètriques[modifica]

Representació d'hipèrboles[modifica]

Domini[modifica]

Per a cercar el domini el que cal fer és trobar tots els nombres que facin que equació no tengui solució.

En aquest cas el domini seria:

(Això vol dir que el domini seria tots els nombres reals menys quan X=2 perquè seria 3 dividit 0 i no es pot dividir per 0 en cap cas.

Asímptotes[modifica]

Les asímptotes són rectes verticals per on no passa la funció, és a dir, seria el nombre del domini. En aquest cas (2).

Punts de tall[modifica]

Els punts de tall de les ens indiquen per on passa la gràfica quan .

El punt de tall de la ens indica per on passa la gràfica quan

Per saber els punts de tall en les X hem de donar valor 0 a la Y. hi hem de resoldre l'equació.

En el cas del punt de tall de la Y hem de donar 0 al valor de la X. hi hem de resoldre la divisió.

Signe de la funció[modifica]

Per saber el signe de la funció en cada tram, els valors de la X han de ser les asímptotes i els nombres dels punts de talls de les x. Entre nombre i nombre heu d'agafar un nombre intermedi i substituir el nombre per la x i observar el signe. El signe ens indicarà el signe de la gràfica entre aquells dos intervals.

Vegeu també[modifica]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Hipèrbola Modifica l'enllaç a Wikidata