Lema de Jordan

De la Viquipèdia, l'enciclopèdia lliure

En anàlisi complexa, el lema de Jordan és un resultat usat freqüentment en conjunció amb el teorema dels residus per avaluar integrals de contorn i integrals impròpies. El nom prové del matemàtic francès Camille Jordan.

Enunciat[modifica]

Considerem una funció contínua f amb valors complexos, definida en un contorn semicircular

de radi R > 0 situat en el semiplà superior, centrat a l'origen. Si la funció f és de la forma

amb el paràmetre a > 0, llavors el lema de Jordan estableix la següent fita superior per la integral de contorn:

També és vàlid un resultat similar per un contorn semicircular en el semiplà inferior quan a < 0.

Observacions[modifica]

  • Si f està definida i és contínua en el contorn semicircular CR per qualsevol R gran i
llavors pel lema de Jordan
  • Comparant amb el lema d'estimació, la fita superior en el lema de Jordan no depèn de forma explícita de la longitud del contorn CR.

Aplicació del lema de Jordan[modifica]

El camí C és la concatenació dels camins C1 i C₂.

El lema de Jordan proveeix d'una forma senzilla per calcular la integral al llarg de l'eix real de funcions f (z) = eiazg(z) holomorfes en el semiplà superior i contínues en el semiplà superior tancat, excepte possiblement un nombre finit de nombres no-reals z1, z₂, ..., zn. Considerem el contorn tancat C, que és la concatenació dels camins C1 i C₂ mostrats a la figura. Per definició,

Com que en C₂ la variable z és real, la segona integral és real:

Es pot calcular el membre esquerre de la igualtat mitjançant el teorema dels residus, obtenint així, per tot R més gran que el màxim dels |z1|, |z₂|, ..., |zn|,

on Res(f, zk) simbolitza el residu de f a la singularitat zk. Per tant, si f satisfà la condició (*), llavors prenent el límit quan R  tendeix a infinit, la integral de contorn sobre C1 s'anul·la pel lema de Jordan, i obtenim el valor de la integral impròpia

Exemple[modifica]

La funció

satisfà la condició del lema de Jordan amb a = 1 per qualsevol R > 0 amb R ≠ 1. Notem que, per R > 1,

llavors es compleix (*). Com que l'única singularitat de f en el pla superior és a z = i, quan apliquem el lema de Jordan obtenim

Com que z = i és un pol simple de f i 1 + z² = (z + i)(z - i), obtenim

amb la qual cosa

Aquest resultat il·lustra com algunes integrals difícils de calcular es poden resoldre mitjançant tècniques d'anàlisi complexa.

Demostració del lema de Jordan[modifica]

Per definició d'integral curvilínia complexa,

La desigualtat

ens dona

Usant MR segons la definició de (*) i la simetria sin θ = sin(πθ), obtenim

Com que el gràfic de sin θ és una funció còncava en l'interval θ ∈ [0,π /2], el gràfic de sin θ queda per sobre de la recta que connecta els seus extrems; llavors

per qualsevol θ ∈ [0,π /2], que al seu torn implica que

Referències[modifica]

  • Churchill, James Ward Brown, Ruel V.. Complex variables and applications. 7th ed.. Boston: McGraw-Hill Higher Education, 2004, p. 262-265. ISBN 0-07-287252-7. 

Vegeu també[modifica]