Braquistòcrona

De Viquipèdia
Dreceres ràpides: navegació, cerca
Braquistòcrona

La braquistòcrona, o «corba de descens més ràpid», és la corba entre dos punts que recorre un cos sobre el qual només actua la gravetat, constant i sense considerar la fricció; se suposa que el cos parteix del repòs en el primer dels dos punts.

El problema d'obtenir la corba que compleix aquestes condicions fou abordat per Galileu i finalment solucionat per Johann Bernoulli el 1696. La solució és una cicloide invertida.

Història[modifica | modifica el codi]

Galileu abordà el problema i n'obtingué una solució incorrecta, publicada el 1638 als Discursos i demostracions sobre dues noves ciències, afirmant que la corba era l'arc d'un cercle. Posteriorment, Johann Bernoulli solucionà el problema (basant-se en el problema de la tautòcrona, analitzat anteriorment) i el proposà a la comunitat matemàtica a la revista Acta Eruditorum el juny de 1696. Cinc matemàtics li enviaren solucions: Isaac Newton, Jakob Bernoulli (el germà d'en Johann), Gottfried Leibniz i Guillaume de l'Hôpital. Quatre d'aquestes solucions (totes excepte la de l'Hôpital) es publicaren a l'edició de maig de 1697 de la revista.

En un intent de superar el seu germà Jakob Bernoulli creà una versió més difícil del problema de la braquistòcrona. Per solucionar-lo desenvolupà nous mètodes matemàtics que posteriorment foren prefeccionats per Leonhard Euler i formaren la base del que es coneix com a «càlcul de variacions».

Vegeu també[modifica | modifica el codi]

Enllaços externs[modifica | modifica el codi]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Braquistòcrona Modifica l'enllaç a Wikidata