Flux turbulent

De Viquipèdia
(S'ha redirigit des de: Turbulència)
Dreceres ràpides: navegació, cerca
Imatge del flux al voltant d'una esfera: R/eD=\frac{U_0 D}{v}=2.10^4 Noteu el canvi d'escales de gran a petita, que és un dels aspectes fonamentals dels fluxos turbulents.
Flux turbulent
Distribució de velocitats a l'interior d'un tub amb flux turbulent.

Dins l'entorn de mecànica de fluids, s'anomena flux turbulent o corrent turbulent el moviment d'un fluid que es dóna en forma caòtica, en què les partícules es mouen desordenadament i les trajectòries de les partícules es troben formant petits remolins aperiòdics, com ara l'aigua en un canal de gran pendent. A causa de això, la trajectòria d'una partícula es pot predir fins a una certa escala, a partir de la qual la trajectòria de la mateixa és impredictible, més precisament caòtica.

Una turbulència en la dinàmica de fluids és un règim fluid caracteritzat per canvis caòtics o estocàstics de les seves propietats. Això inclou una baix moment de difusió, un alt moment de convecció i una ràpida variació de la pressió i la velocitat en l'espai el temps. El premi Nobel Richard Feynman descriu la turbulència com "el problema més important sense resoldres de la física clàssica."[1] El flux que no és turbulent s'anomena flux laminar.

Flux laminar i turbulent de l'aigua

Les primeres explicacions científiques de la formació del flux turbulent procedeixen de Andrei Kolmogórov i Lev D. Landau (teoria de Hopf-Landau). Encara que la teoria modernament acceptada de la turbulència va ser proposada el 1974 per David Ruelle i Floris Takens.

Encara que no hi ha cap fórmula que relacioni el nombre de Reynolds i la turbulència, els fluxs amb alt nombre de Reynolds passen a ser turbulents, mentre que els que el tenen baix normalment romanen laminars.

Teories sobre el flux turbulent[modifica | modifica el codi]

Encara que les equacions de Navier-Stokes que es remunten al segle XIX descriuen adequadament tant el flux laminar com el flux turbulent, el mecanisme concret de l'inici del moviment turbulent va seguir sent un misteri durant molt de temps. Experimentalment s'havia vist que el flux turbulent semblava involucrar vòrtex més i més petits cada vegada, però ja que els fluids estan fets d'àtoms tard o d'hora s'arribaria a escales atòmiques on no podrien existir aquests vòrtex i en aquest nivell de descripció les equacions de Navier -Stokes no poden constituir una descripció vàlida.

Així inicialment el matemàtic francès Jean Leray, el 1934, va proposar la teoria de que el moviment turbulent és un efecte macroscòpic de l'estructura atòmica. Les inexactituds en les dimensions atòmiques en les equacions de Navier-Stokes introduirien efectes no cotemplats en aquestes equacions, es propaguen a nivells més alts i això és el que veiem com flux turbulent. En aquest moment, l'estructura atòmica estava molt de moda com a explicació i aquesta teoria va ser mantinguda durant algun temps fins que Landau i Hopf van proposar una idea més realista i experimentalment verificable.

Teoria de Landau-Hopf[modifica | modifica el codi]

Menys d'una dècada després de la proposta de Leray, el 1944, Lev Landau proposava una idea més concreta sobre l'inici de la turbulència. L'article de Landau començava així: [2]

« Tot i que s'ha discutit extensament en la literatura el moviment turbulent, la veritable essència d'aquest fenomen encara no té la suficente claredat [...] En opinió de l'autor, el problema pot aparèixer amb una nova llum si s'examina a fons el fenomen de la iniciació de la turbulència »
— LD Landau, 1944

Landau considerar la turbulència com el resultat d'un flux d'un fluid inicialment estable que adquireix un moviment addicional de vibració, i després un altre i un altre. Així una turbulència podia ser inicialment un flux estable amb tres o quatre moviments periòdics superposats, i va idear un mecanisme pel qual quan es provoca el flux totalment turbulent el nombre de moviments periòdics es fa infinitament gran. El mecanisme bàsic de creació de les vibracions addicionals es coneix com bifurcació de Hopf, en honor a Eberhard Hopf. Per aquesta raó i perquè el propi Hopf el 1948 va proposar una teoria bastant més detallada sobre la proposta de Landau aquesta teoria es va cridar teoria de Hopf-Landau.

Un model simplificat de les equacions de Navier-Stokes l'holandès Burgers de les equacions que podia ser resolt explícitament, va mostrar que apareixia un flux turbulent segons la línia de Landau. Per aquesta raó durant les tres dècades següents la teoria de Hopf-Landau va ser acceptada i utilitzada àmpliament. Era simple i comprensible i era accessible mitjançant les tècniques clàssiques de anàlisi de Fourier de manera que permetia fer alguns càlculs aproximats. No obstant això, experiments detallats a la dècada de 1970 van provar que la teoria de Hopf-Landau no podia competir amb una teoria rival proposta inicialment per dos matemàtics.

La calor i la transferència d'energia cinètica[modifica | modifica el codi]

Problemes no resolts de Física
És possible fer un model teòric per descriure el comportament d'un flux turbulent - en particular, les seves estructures internes? Question mark2.svg

Quan el flux és turbulent, les partícules presenten moviment transversal addicional que augmenta la taxa de l'energia i l'impuls de canvi entre ells el que augmenta el coeficient de transmissió tèrmica transferència de calor i el coeficient de fricció.

Suposem per un flux turbulent de dues dimensions que un era capaç de localitzar un punt específic en el líquid i mesurar la velocitat real v v=\left( {{v}_{x}},{{v}_{y}} \right) de cada partícula que passa per aquest punt en un moment donat. Aleshores podríem trobar la velocitat real fluctua al voltant d'un valor mitjà:

{{v}_{x}}=\underbrace{\overline{{{v}_{x}}}}_{\begin{smallmatrix} 
 \text{valor} \\ 
 \text{mitja} 
\end{smallmatrix}}+\underbrace{{{{{v}'}}_{x}}}_{\text{fluctuacio}}\text{ }\text{, }{{v}_{y}}=\overline{{{v}_{y}}}+{{{v}'}_{y}}

i el mateix per a la temperatura  \left (T = \overline{T}+{T}\right) i la pressió \left( P=\overline{P}+{P}' \right), on les quantitats preparat denoten fluctuacions superposades a la mitjana. Aquesta descomposició d'una variable de flux a un valor mitjà i amb una fluctuació turbulenta va ser proposat originalment per Osborne Reynolds el 1895, i és considerat com l'inici de l'anàlisi sistemàtica matemàtica de flux turbulent, com un sub-camp de la dinàmica de fluids. Si bé els valors mitjans es prenen com a variables previsibles determinats per les lleis dinàmiques, les fluctuacions turbulentes es consideren variables estocàstiques.

El flux de calor i transferència d'energia cinètica (representat per l'esforç tallant  \tau ) en la direcció normal al flux durant un temps determinat es

\begin{align}
 & q=\underbrace{{{{{v}'}}_{y}}\rho {{c}_{P}}{T}'}_{\text{valor experimental}}=-{{k}_{\text{turb}}}\frac{\partial \overline{T}}{\partial y} \\ 
 & \tau =\underbrace{-\rho \overline{{{{{v}'}}_{y}}{{{{v}'}}_{x}}}}_{\text{valor experimental}}={{\mu }_{\text{turb}}}\frac{\partial \overline{{{v}_{x}}}}{\partial y} \\ 
\end{align}


on {{c}_{P}} és la calor [[]] capacitat a pressió constant,  \rho és la densitat del fluid, {{\mu }_{\text{turb}}} és el coeficient de viscositat turbulenta [[]] i {{k}_{\text{turb}}} és la turbulenta tèrmica conductivitat.[3]

Turbulència en la meteorologia[modifica | modifica el codi]

Turbulència en l'ala d'un avió
Visualització d'una turbulència

Una turbulència atmosfèrica és una agitació de l'atmosfera, que s'aprecia en una capa, propera a terra i de gruix variable, i es caracteritza per un canvi sobtat de direcció i intensitat del vent en una curta distància en sentit vertical. Freqüentment es classifiquen les turbulències segons la causa que les origina:

  • Turbulència mecànica, passa quan obstacles com ara edificació, terreny irregular o arbres intervenen amb el flux normal del vent.
  • Turbulència convectiva, anomenada també turbulència termal, és un fenomen típic de les hores diürnes, amb bon temps, es forma pel pas d'aire fred sobre les masses d'aire calent o quan per efecte de radiació solar a el sòl escalfa les masses d'aire.
  • Turbulència frontal, es genera al pas d'un front fred que es desplaça ràpidament, ocasiona ràfegues de fins a 1000 '/ mi se li coneix també com ràfegues prefrontals.

Alguns tipus comuns de turbulència són:

  • Estela turbulenta, es produeix per la diferència entre l'intradós i l'extradós del perfil alar formant aquest fenomen. (Ex. Imatge de l'aeronau mostrada a la figura de dalt)
  • Turbulència d'aire clar o les seves sigles en anglès CAT (Clear Air Turbulence):

Tipus de turbulència severa, que passa a partir dels 15.000 peus; les seves característiques són: sense indicacions físiques com pols partícules etc. Ocorre per la interacció de diferents capes d'aire amb diferents velocitats associades a corrents convectives s'associen amb uns tipus de vents anomenats Jetstream.

  • Ones de muntanya és causat principalment per turbulència orogràfica l'aire davant d'un flux laminar del costat de sobrevent (abans de la muntanya) al costat de sotavent (després de la muntanya) el qual es forma turbulent creant aquest tipus d'ones, aquest tipus de fenomen requereix vents majors als 20 nusos perquè es formi.

Segons la intensitat de la turbulència es fa la següent classificació:

Tipus Velocitat Càrrega Variació

Lleugera 5 a 14/09 nusos 0.20g - 0.49g 300 '- 1199'

Moderada 15 a 24.9nudos 0.5g - 0.99g 1200 '- 2099'

Severa> a 25nudos 1.0g - 1.99g 2100 '- 2999'

Extrema ------------→ 2.0> a 3000 '

Exemples de turbulència[modifica | modifica el codi]

Fitxer:Humphrey Bogart by Karsh (Library and Archives Canada).jpg
Flux laminar i flux turbulent en el fum d'una cigarreta de Humphrey Bogart
  • El fum que surt d'una cigarreta en els primers centímetres roman laminar i passa més amunt a ser turbulent i inestable, de forma similar a com ho fa la contaminació atmosfèrica.
  • La barreja pel vent d'aire càlid i fred de l'atmosfera causa turbulència d'aire clar que s'experimenta en el vols dels avions.
  • La majoria de la circulació atmosfèrica terrestre.
  • Les condicons de flux de molts dels equipaments industrials com per exemple les canonades i màquines com per exemple elsmotors de combustió interna.
  • El flux extern de molts tipus de vehicles com són els cotxes, avions, vaixells i submarins.

Vegeu també[modifica | modifica el codi]

Bibliografia[modifica | modifica el codi]

  • Vine Et Chow, Hidràulica dels canals oberts. 1982. ISBN 968-13-1327-5
  • Falkovich, Gregory and Sreenivasan, Katepalli R. Lessons from hydrodynamic turbulence, Physics Today, vol. 59, no. 4, pages 43–49 (April 2006).«PDF».
  • U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 1995.«Enllaç».
  • P. A. Davidson Turbulence - An Introduction for Scientists and Engineers. Oxford University Press, 2004.
  • P. A. Durbin and B. A. Pettersson Reif Statistical Theory and Modeling for Turbulent Flows. Johns Wiley & Sons, 2001.
  • T. Bohr, M.H. Jensen, G. Paladin and A.Vulpiani. Dynamical Systems Approach to Turbulence, Cambridge University Press, 1998.«Enllaç».

Referències i notes[modifica | modifica el codi]

  1. «Turbulence theory gets a bit choppy». USA Today, 10 setembre 2006.
  2. I. Stewart, 2001, p. 223.
  3. H. Tennekes i Lumley JL, "Un primer curs en turbulència", The MIT Press, (1972).

Enllaços externs[modifica | modifica el codi]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Flux turbulent Modifica l'enllaç a Wikidata