Múscul esquelètic: diferència entre les revisions

De la Viquipèdia, l'enciclopèdia lliure
Contingut suprimit Contingut afegit
m neteja i estandardització de codi
Ampliació contingut (Els 10.000)
Línia 1: Línia 1:
El '''múscul esquelètic''' és un tipus de [[Múscul|teixit muscular estriat]] que presenten els músculs units a l'[[esquelet]]. Representa entre el 40% i 50% de la nostra massa corporal i emmagatzema pràcticament la meitat de totes les proteïnes del nostre cos.<ref name=":1">{{Ref-llibre|títol=Cos antic, entorn modern: el nostre cos està preparat per a la vida moderna?|url=https://books.google.es/books?id=cLW-Ld-FFHMC&pg=PA94|editorial=Edicions Universitat Barcelona|data=2010-04|isbn=978-84-475-3445-6|llengua=ca|nom=Francisco Javier Casado|cognom=Merediz|nom2=Francisco Javier López|cognom2=Soriano|nom3=Ignasi Ramírez|cognom3=Sunyer|nom4=Miquel Llobera i|cognom4=Sande|nom5=María Soley i|cognom5=Farrés|pàgines=94}}</ref> Està format per [[cèl·lula|cèl·lules]] o fibres allargades d’entre 1 i 40 mm de llargada i de fins a 0,1 mm de diàmetre.(REFA)<ref name=":1" /> Les cèl·lules de la musculatura estriada són multinucleades que situen els seus nuclis a la perifèria. La seva funció principal és la de facilitar el moviment i mantenir la unió os-articulació a través de la seva [[contracció muscular|contracció]]. Són, generalment, de contracció voluntària (a través d'innervació [[nervi]]osa), encara que poden contreure's involuntàriament. Aquesta funció és possible gràcies a l'organització de proteïnes d'[[actina]] i [[miosina]] i que li confereixen aquest estriament que es veu perfectament al microscopi. Els músculs tenen una gran capacitat d'adaptació, modifiquen més que cap altre òrgan tant el seu contingut com la seva forma. D'una atròfia severa pot tornar a reforçar-se en poc temps, gràcies a l'entrenament, igual que amb el desús s'[[atròfia|atrofia]] conduint al múscul a una disminució de grandària, força, fins i tot reducció de la quantitat d'[[orgànuls]] cel·lulars. Si s'immobilitza en posició d'escurçament, al cap de poc temps s'adapta a la seva nova longitud requerint entrenament a força d'estiraments per a tornar a la seva longitud original, fins i tot si es deixa estirat un temps, pot donar inestabilitat articular per la hiperlaxitut adoptada. El múscul a causa del seu alt consum d'energia, requereix una bona irrigació sanguínia que li aporti aliment i per a eliminar desfets, això al costat del pigment de les cèl·lules musculars li donen al múscul una aparença vermellosa en l'ésser viu.
El '''múscul esquelètic''' és un tipus de [[Múscul|teixit muscular estriat]] que presenten els músculs units a l'[[esquelet]]. Està format per [[cèl·lula|cèl·lules]] o fibres allargades i multinucleades que situen els seus nuclis a la perifèria. Obeeixen a l'organització de proteïnes d'[[actina]] i [[miosina]] i que li confereixen aquest estriament que es veu perfectament al microscopi. Són usats per a facilitar el moviment i mantenir la unió os-articulació a través de la seva [[contracció muscular|contracció]]. Són, generalment, de contracció voluntària (a través d'innervació [[nervi]]osa), encara que poden contreure's involuntàriament.


==Estructura anatòmica==
El cos humà està format aproximadament d'un 40% d'aquest tipus de múscul i un 10% de [[múscul cardíac]] i [[múscul llis|visceral]].
[[Fitxer:Illu muscle structure.jpg|miniatura|Estructura d’un múscul]]
En el nostre cos trobem al voltant de 650 músculs esquelètics diferents, tot i que alguns autors eleven aquesta xifra a 840.<ref>{{Ref-web|títol=What is the strongest muscle in the human body?|url=https://www.loc.gov/item/what-is-the-strongest-muscle-in-the-human-body/|consulta=2023-01-19|llengua=anglès|editor=Biblioteca dels Congrés dels Estats Units}}</ref> En total representen entre el 40% i 50% de la nostra massa corporal i emmagatzema pràcticament la meitat de totes les proteïnes del nostre cos.<ref name=":1" /> La majoria dels músculs es troben en parells bilaterals per servir ambdós costats del cos i mentre un d’ells es contrau l’altre es relaxa de manera que treballen junts per dur a terme una acció.


L’estructura del múscul esquelètic ve determinada no solament per les fibres musculars sinó també per estructures de teixit conjuntiu que en determinen les diferents unitats estructurals i donen pas als nervis i vasos sanguinis que irriguen el teixit.<ref name=":2">{{Ref-llibre|títol=ESTRUCTURA Y FUNCIÓN DEL CUERPO HUMANO (Color)|url=https://books.google.es/books?id=lJgQBiDIGwAC&pg=PA141|editorial=Editorial Paidotribo|data=2006-07-20|isbn=978-84-8019-867-7|llengua=es|nom=Adolf|cognom=Faller|nom2=Michael|cognom2=Schünke|pàgines=141-142}}</ref> Distingim tres capes conjuntives diferents que en conjunt s'anomenen mísia: l’[[endomisi]], un teixit conjuntiu laxe que envolta cada una de les fibres, el perimisi intern, un teixit conjuntiu una mica més dens que reuneix fibres en grups anomenats fascicles musculars i [[epimisi]], una capa més consistent de teixit conjuntiu que envolta un múscul estriat i atorga unitat estructural al múscul.
Els músculs tenen una gran capacitat d'adaptació, modifiquen més que cap altre òrgan tant el seu contingut com la seva forma. D'una atròfia severa pot tornar a reforçar-se en poc temps, gràcies a l'entrenament, igual que amb el desús s'[[atròfia|atrofia]] conduint al múscul a una disminució de grandària, força, fins i tot reducció de la quantitat d'[[orgànuls]] cel·lulars. Si s'immobilitza en posició d'escurçament, al cap de poc temps s'adapta a la seva nova longitud requerint entrenament a força d'estiraments per a tornar a la seva longitud original, fins i tot si es deixa estirat un temps, pot donar inestabilitat articular per la hiperlaxitut adoptada.


En un múscul apart de la seva part contràctil també trobem una part no contràctil formada per teixit connectiu fibrós dens que constitueix el [[tendó]] a cada extrem. El tendó permet permet unir els músculs als ossos i transmet a aquests l’efecte de tracció desenvolupat pel múscul permetent el moviment. La longitud d'un múscul inclou aquests tendons. A més a més, cada múscul independent està recobert per una estructura de teixit connectiu molt resistent anomenada [[fàscia]].<ref name=":2" /> Les fàscies limiten el fregament produït durant el treball muscular reduint així les pèrdues de força generades<ref name=":2" /> i a diferència de l’epimisi envolten no només el múscul sinó també vasos i nervis.<ref>{{Ref-web|títol=Difference Between Epimysium and Fascia|url=https://www.differencebetween.com/difference-between-epimysium-and-fascia/|data=2020-01-03|consulta=2023-01-19|llengua=en-US}}</ref> Quan els tendons discorren contiguament a l’ós o rodegen una protuberància òssia (hipomocli) també estan protegits per uns conductes que milloren la seva capacitat de lliscament.<ref name=":2" />
El múscul a causa del seu alt consum d'energia, requereix una bona irrigació sanguínia que li aporti aliment i per a eliminar desfets, això al costat del pigment de les cèl·lules musculars li donen al múscul una aparença vermellosa en l'ésser viu.

==Funcions del múscul esquelètic==
La musculatura esquelètica té una ampla varietat de funcions<ref>{{Ref-llibre|títol=Anatomy, Skeletal Muscle|url=http://www.ncbi.nlm.nih.gov/books/NBK537236/|editorial=StatPearls Publishing|data=2022|lloc=Treasure Island (FL)|nom=Heeransh D.|cognom=Dave|nom2=Micah|cognom2=Shook|nom3=Matthew|cognom3=Varacallo}}</ref> entre les que destaquen:
* Moviment del cos i locomoció. A diferència de la musculatura llisa i cardíaca, el moviment de la majoria de la musculatura esquelètica és voluntari de manera que és la principal responsable de la locomoció i el moviment.
* Manteniment de la posició i la [[Propiorecepció|propiocepció]]. Els receptors dels músculs, els tendons i les articulacions envien informació al [[cervell]] indicant quina és la posició exacta de les diferents parts del cos en cada moment.<ref name=:0>{{Ref-web|títol=La propiocepción ¿Qué es, para qué sirve y cómo funciona?|url=https://www.barnaclinic.com/blog/traumatologia-deportiva/2019/01/25/propiocepcion/|data=2019-01-25|consulta=2020-10-24|llengua=es-ES|cognom=gizhels}}</ref>
* Estabilitat articular.
* Protecció de les estructures internes.<ref>{{Ref-publicació|article=Ability of skeletal muscle to protect bones and joints from external impacts: Acoustical assessment|url=https://asa.scitation.org/doi/10.1121/2.0000104|publicació=Proceedings of Meetings on Acoustics|data=2015-05-18|pàgines=020003|volum=23|exemplar=1|doi=10.1121/2.0000104|nom=Armen|cognom=Sarvazyan|nom2=Sergey|cognom2=Tsyuryupa|nom3=Oleg|cognom3=Rudenko}}</ref> El múscul protegeix el sistema esquelètic dels impactes externs mitjançant l'absorció i redistribució de l'energia de xoc. Durant la contracció muscular augmenta molt la seva viscositat ajudant a absorbir i dissipar xocs perillosos.
* Contribueix al moviment de la sang en les venes i al de la limfa en els [[Vas limfàtic|vasos limfàtics]]. A diferència del sistema circulatori, el [[sistema limfàtic]] no té una bomba que permeti el bombejament de la limfa i la seva circulació es produeix en bona part gràcies al moviment dels músculs que, de manera indirecta, l’impulsen cap endavant. En el cas de la sang, les venes, a diferència de les artèries, no tenen capacitat contràctil que ajudi al moviment propulsat pel cor i de nou el moviment del múscul esquelètic contribueix de manera indirecta a aquest flux.
* Participa en el metabolisme de les proteïnes.<ref>{{Ref-publicació|article=Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease|url=https://pubmed.ncbi.nlm.nih.gov/27324808/|publicació=Journal of the American Medical Directors Association|data=2016-09-01|issn=1538-9375|pmid=27324808|pàgines=789–796|volum=17|exemplar=9|doi=10.1016/j.jamda.2016.04.019|nom=Josep M.|cognom=Argilés|nom2=Nefertiti|cognom2=Campos|nom3=José M.|cognom3=Lopez-Pedrosa|nom4=Ricardo|cognom4=Rueda|nom5=Leocadio|cognom5=Rodriguez-Mañas}}</ref> El muscle estriat és un lloc d’acumulació de [[glucosa]] en forma de [[glicogen]] i també és un reservori d’aminoàcids que poden ser mobilitzats a altres punts del cos. Per exemple, en cas de desnutrició les cèl·lules musculars degraden les seves proteïnes i envien els aminoàcids resultants al fetge a través del sistema circulatori per tal que aquest pugui fer glucosa per nodrir el cervell.
* Generar calor a través de la [[termogènesi]] gràcies a l’activitat muscular. Aquesta generació de calor pot ser a través de la tremolor i també a través d’un segon mecanisme controlat per una proteïna anomenada sarcolipina.<ref>{{Ref-publicació|article=Muscle Non-shivering Thermogenesis and Its Role in the Evolution of Endothermy|url=https://www.frontiersin.org/articles/10.3389/fphys.2017.00889|publicació=Frontiers in Physiology|data=2017|issn=1664-042X|volum=8|doi=10.3389/fphys.2017.00889/full|nom=Julia|cognom=Nowack|nom2=Sylvain|cognom2=Giroud|nom3=Walter|cognom3=Arnold|nom4=Thomas|cognom4=Ruf}}</ref>
* Actuar com a òrgan endocrí produint diferents [[miocina|miocines]] com la interleucina-6, el factor de creixement de fibroblasts (FGF-21), la interleuquina-15 (IL-15), la irisina, la mionectina, el factor neurotròfic derivat del cervell (BDNF), o l’osteonectina.<ref>{{Ref-publicació|article=Role of Myokines in Regulating Skeletal Muscle Mass and Function|url=https://www.frontiersin.org/articles/10.3389/fphys.2019.00042|publicació=Frontiers in Physiology|data=2019|issn=1664-042X|volum=10|doi=10.3389/fphys.2019.00042/full|nom=Jong Han|cognom=Lee|nom2=Hee-Sook|cognom2=Jun}}</ref>

== Referències==
{{Referències}}


== Vegeu també ==
== Vegeu també ==

Revisió del 22:24, 19 gen 2023

El múscul esquelètic és un tipus de teixit muscular estriat que presenten els músculs units a l'esquelet. Representa entre el 40% i 50% de la nostra massa corporal i emmagatzema pràcticament la meitat de totes les proteïnes del nostre cos.[1] Està format per cèl·lules o fibres allargades d’entre 1 i 40 mm de llargada i de fins a 0,1 mm de diàmetre.(REFA)[1] Les cèl·lules de la musculatura estriada són multinucleades que situen els seus nuclis a la perifèria. La seva funció principal és la de facilitar el moviment i mantenir la unió os-articulació a través de la seva contracció. Són, generalment, de contracció voluntària (a través d'innervació nerviosa), encara que poden contreure's involuntàriament. Aquesta funció és possible gràcies a l'organització de proteïnes d'actina i miosina i que li confereixen aquest estriament que es veu perfectament al microscopi. Els músculs tenen una gran capacitat d'adaptació, modifiquen més que cap altre òrgan tant el seu contingut com la seva forma. D'una atròfia severa pot tornar a reforçar-se en poc temps, gràcies a l'entrenament, igual que amb el desús s'atrofia conduint al múscul a una disminució de grandària, força, fins i tot reducció de la quantitat d'orgànuls cel·lulars. Si s'immobilitza en posició d'escurçament, al cap de poc temps s'adapta a la seva nova longitud requerint entrenament a força d'estiraments per a tornar a la seva longitud original, fins i tot si es deixa estirat un temps, pot donar inestabilitat articular per la hiperlaxitut adoptada. El múscul a causa del seu alt consum d'energia, requereix una bona irrigació sanguínia que li aporti aliment i per a eliminar desfets, això al costat del pigment de les cèl·lules musculars li donen al múscul una aparença vermellosa en l'ésser viu.

Estructura anatòmica

Estructura d’un múscul

En el nostre cos trobem al voltant de 650 músculs esquelètics diferents, tot i que alguns autors eleven aquesta xifra a 840.[2] En total representen entre el 40% i 50% de la nostra massa corporal i emmagatzema pràcticament la meitat de totes les proteïnes del nostre cos.[1] La majoria dels músculs es troben en parells bilaterals per servir ambdós costats del cos i mentre un d’ells es contrau l’altre es relaxa de manera que treballen junts per dur a terme una acció.

L’estructura del múscul esquelètic ve determinada no solament per les fibres musculars sinó també per estructures de teixit conjuntiu que en determinen les diferents unitats estructurals i donen pas als nervis i vasos sanguinis que irriguen el teixit.[3] Distingim tres capes conjuntives diferents que en conjunt s'anomenen mísia: l’endomisi, un teixit conjuntiu laxe que envolta cada una de les fibres, el perimisi intern, un teixit conjuntiu una mica més dens que reuneix fibres en grups anomenats fascicles musculars i epimisi, una capa més consistent de teixit conjuntiu que envolta un múscul estriat i atorga unitat estructural al múscul.

En un múscul apart de la seva part contràctil també trobem una part no contràctil formada per teixit connectiu fibrós dens que constitueix el tendó a cada extrem. El tendó permet permet unir els músculs als ossos i transmet a aquests l’efecte de tracció desenvolupat pel múscul permetent el moviment. La longitud d'un múscul inclou aquests tendons. A més a més, cada múscul independent està recobert per una estructura de teixit connectiu molt resistent anomenada fàscia.[3] Les fàscies limiten el fregament produït durant el treball muscular reduint així les pèrdues de força generades[3] i a diferència de l’epimisi envolten no només el múscul sinó també vasos i nervis.[4] Quan els tendons discorren contiguament a l’ós o rodegen una protuberància òssia (hipomocli) també estan protegits per uns conductes que milloren la seva capacitat de lliscament.[3]

Funcions del múscul esquelètic

La musculatura esquelètica té una ampla varietat de funcions[5] entre les que destaquen:

  • Moviment del cos i locomoció. A diferència de la musculatura llisa i cardíaca, el moviment de la majoria de la musculatura esquelètica és voluntari de manera que és la principal responsable de la locomoció i el moviment.
  • Manteniment de la posició i la propiocepció. Els receptors dels músculs, els tendons i les articulacions envien informació al cervell indicant quina és la posició exacta de les diferents parts del cos en cada moment.[6]
  • Estabilitat articular.
  • Protecció de les estructures internes.[7] El múscul protegeix el sistema esquelètic dels impactes externs mitjançant l'absorció i redistribució de l'energia de xoc. Durant la contracció muscular augmenta molt la seva viscositat ajudant a absorbir i dissipar xocs perillosos.
  • Contribueix al moviment de la sang en les venes i al de la limfa en els vasos limfàtics. A diferència del sistema circulatori, el sistema limfàtic no té una bomba que permeti el bombejament de la limfa i la seva circulació es produeix en bona part gràcies al moviment dels músculs que, de manera indirecta, l’impulsen cap endavant. En el cas de la sang, les venes, a diferència de les artèries, no tenen capacitat contràctil que ajudi al moviment propulsat pel cor i de nou el moviment del múscul esquelètic contribueix de manera indirecta a aquest flux.
  • Participa en el metabolisme de les proteïnes.[8] El muscle estriat és un lloc d’acumulació de glucosa en forma de glicogen i també és un reservori d’aminoàcids que poden ser mobilitzats a altres punts del cos. Per exemple, en cas de desnutrició les cèl·lules musculars degraden les seves proteïnes i envien els aminoàcids resultants al fetge a través del sistema circulatori per tal que aquest pugui fer glucosa per nodrir el cervell.
  • Generar calor a través de la termogènesi gràcies a l’activitat muscular. Aquesta generació de calor pot ser a través de la tremolor i també a través d’un segon mecanisme controlat per una proteïna anomenada sarcolipina.[9]
  • Actuar com a òrgan endocrí produint diferents miocines com la interleucina-6, el factor de creixement de fibroblasts (FGF-21), la interleuquina-15 (IL-15), la irisina, la mionectina, el factor neurotròfic derivat del cervell (BDNF), o l’osteonectina.[10]

Referències

  1. 1,0 1,1 1,2 Merediz, Francisco Javier Casado; Soriano, Francisco Javier López; Sunyer, Ignasi Ramírez; Sande, Miquel Llobera i; Farrés, María Soley i. Cos antic, entorn modern: el nostre cos està preparat per a la vida moderna?. Edicions Universitat Barcelona, 2010-04, p. 94. ISBN 978-84-475-3445-6. 
  2. «What is the strongest muscle in the human body?» (en anglès). Biblioteca dels Congrés dels Estats Units. [Consulta: 19 gener 2023].
  3. 3,0 3,1 3,2 3,3 Faller, Adolf; Schünke, Michael. ESTRUCTURA Y FUNCIÓN DEL CUERPO HUMANO (Color) (en castellà). Editorial Paidotribo, 2006-07-20, p. 141-142. ISBN 978-84-8019-867-7. 
  4. «Difference Between Epimysium and Fascia» (en anglès americà), 03-01-2020. [Consulta: 19 gener 2023].
  5. Dave, Heeransh D.; Shook, Micah; Varacallo, Matthew. Anatomy, Skeletal Muscle. Treasure Island (FL): StatPearls Publishing, 2022. 
  6. gizhels. «La propiocepción ¿Qué es, para qué sirve y cómo funciona?» (en espanyol europeu), 25-01-2019. [Consulta: 24 octubre 2020].
  7. Sarvazyan, Armen; Tsyuryupa, Sergey; Rudenko, Oleg «Ability of skeletal muscle to protect bones and joints from external impacts: Acoustical assessment». Proceedings of Meetings on Acoustics, 23, 1, 18-05-2015, pàg. 020003. DOI: 10.1121/2.0000104.
  8. Argilés, Josep M.; Campos, Nefertiti; Lopez-Pedrosa, José M.; Rueda, Ricardo; Rodriguez-Mañas, Leocadio «Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease». Journal of the American Medical Directors Association, 17, 9, 01-09-2016, pàg. 789–796. DOI: 10.1016/j.jamda.2016.04.019. ISSN: 1538-9375. PMID: 27324808.
  9. Nowack, Julia; Giroud, Sylvain; Arnold, Walter; Ruf, Thomas «Muscle Non-shivering Thermogenesis and Its Role in the Evolution of Endothermy». Frontiers in Physiology, 8, 2017. DOI: 10.3389/fphys.2017.00889/full. ISSN: 1664-042X.
  10. Lee, Jong Han; Jun, Hee-Sook «Role of Myokines in Regulating Skeletal Muscle Mass and Function». Frontiers in Physiology, 10, 2019. DOI: 10.3389/fphys.2019.00042/full. ISSN: 1664-042X.

Vegeu també

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Múscul esquelètic