Pantalla de cristall líquid

De Viquipèdia
Dreceres ràpides: navegació, cerca

La pantalla de cristall líquid o LCD (acrònim anglès de Liquid Crystal Display) és l'aplicació més comuna de la tecnologia del cristall líquid. Des de rellotges digitals fins a avançades pantalles de televisió, aquest tipus de tecnologia ha intervingut molt activament els darrers anys, obtenint així productes de gran qualitat i definició.

Diagrama de capes d'un display LCD:
1. filtre polaritzador (sovint només de plàstic estriat) direcció de la polarització perpendicular amb 5
2. elèctrode abans
3. cristalls líquids en l'estat nemàtic nemàtic fase
4. elèctrode posterior
5. filtre polaritzador
* mirall

El cristall líquid consisteix en una agrupació de petits segments (anomenats píxels) que poden ser manipulats per presentar informació. Aquesta idea bàsica és comú a totes les pantalles.

Per què són tan importants les pantalles de cristall líquid? El factor essencial és la mida. Un LCD consisteix bàsicament de dues plaques fines entre les quals hi ha el compost anomenat cristall líquid. En aquest tipus de pantalles no hi ha la presència de cap tub de raigs catòdics (CRT). Això fa particularment útils els LCD per aplicacions on la mida (així com el pes) és important.

En general, els LCD usen menys potencia que els tubs de raigs catòdics. Molts LCD són reflectius, la qual cosa significa que usen només llum ambient per il·luminar la pantalla. Inclús pantalles que requereixen una font de llum externa consumeixen molta menys potencia que els tubs de raigs catòdics.

Història[modifica | modifica el codi]

Tot i que la tecnologia del cristall líquid és una tecnologia relativament recent, el terme va néixer a finals del segle XIX. I no va arribar precisament gràcies a estudis d'electrònica, sinó gràcies a la botànica. El 1888 el botànic austríac Friedrich Reinitzer va observar les curioses propietats del cristall líquid mentre experimentava amb una substància similar al colesterol. Reinitzer va comprovar que aquesta substància presentava 2 punts diferents de fusió: a 145 °C passava a un estat sòlid tèrbol i a mesura que s'escalfava (179°C) es feia transparent.

No va ser fins a 1904 que Otto Lehmann va publicar el primer treball sobre cristalls líquids. Al 1911, Charles Mauguin va descriure l'estructura i les qualitats del cristall líquid. Fins aquell moment encara no s'havia aplicat aquesta tecnologia a cap aplicació pràctica. Però al 1936, la companyia Marconi Wireless Telegraph va patentar la primera aplicació pràctica del cristall líquid: la vàlvula de cristall líquid. Al 1962 va aparèixer la primera gran publicació escrita en llengua anglesa titulada "Estructura molecular i qualitats del cristall líquid" (original: "Molecular structure and properties of fluid crystals", per Dr. George W. Gray).

El primer LCD fabricat es va basar en l'Efecte de Dispersió Dinàmic (Dynamic Scattered Method - DSM). Va ser creat pel grup Radio Corporation of America (RCA). Sota la direcció de George H. Unhurt al 1968, la firma Optel va desenvolupar alguns LCD basats en aquest principi.

James Fergason, de la universitat de l'estat de Kent, va descobrir al 1969 l'Efecte Nemàtic Retorçat de Camp en cristalls líquids. La seva empresa, anomenada en aquell temps FIRM ILIXCO (LXD Incorporated és el nom actual de la companyia), va produir els primers LCD fabricats amb aquest tipus de tecnologia. Ràpidament, aquesta última es va imposar a la tecnologia DSM, per la seva qualitat.

A partir d'aquest moment, les propietats i tecnologia per a la fabricació de LCD han anat evolucionant de manera espectacular fins a arribar als monitors TFT que avui en dia es poden trobar a qualsevol establiment.

Funcionament[modifica | modifica el codi]

Article principal: Twisted nematic

En primera aproximació es podria entendre una pantalla de cristall líquid com una col·lecció de petits interruptors que permeten en major o menor mesura el pas de la llum a través seu de manera independent els uns dels altres. Cada interruptor generarà un píxel de la imatge que s'acabarà formant per contrast entre els diferents píxels.

Secció transversal LCD

Aquests interruptors lumínics es basen en la capacitat d'un tipus de materials (cristalls líquids) per modificar la polarització de la llum que els travessa. Físicament l'interruptor té una estructura estratificada on cada capa actua sobre la llum que la travessa per acabar obtenint la funcionalitat desitjada. A la capa inferior tenim un polaritzador de la llum, sobre seu hi ha una capa de material transparent que funciona com a elèctrode, la següent capa està formada per un cristall líquid a sobre del qual hi torna a haver un altre elèctrode; finalment l'última capa torna a ser un polaritzador però amb l'eix girat un angle de 90º respecte al de la capa inferior. A la figura següent es mostra l'estratificació de l'interruptor:

Els cristalls líquids són materials les molècules dels quals, en absència de forces externes tendeixen a alinear-se en una estructura cristal·lina. Però, en presència d'un camp elèctric tendeixen a alinear-se en la direcció del camp. En l'estat de repòs o cristal·lí el cristall produeix una rotació de 90º de la polarització de la llum que el traspassa, mentre que en presència del camp elèctric, aquesta rotació de la polarització serà cada cop menor com més intens sigui el camp fins a una rotació nul·la.

Així l'estructura abans comentada polaritza la llum incident (sense polaritzar per naturalesa) en una direcció degut al polaritzador inferior, llavors en absència de camp elèctric, el cristall líquid gira la polarització 90º i permet d'aquesta manera que passi a través del polaritzador superior sense atenuació apreciable, obtenint així el color més blanc possible. A mesura que anem intensificant el camp elèctric sobre el cristall líquid, aplicant una tensió més elevada als elèctrodes, farem que el gir de polarització sigui inferior als 90º i per tant la intensitat de llum que deixarà passar el polaritzador superior serà inferior; el cas extrem és aquell en qual el cristall líquid deixa passar la llum a través seu sense variar-ne la seva polarització i per tant aquesta llum no podrà traspassar el polaritzador superior, el que originarà el color més negre possible.

polarització d'un LCD

Tipus de LCD[modifica | modifica el codi]

LCD reflectiu[modifica | modifica el codi]

La font de llum està davant del visualitzador i es col·loca un fons reflector al darrere. Principalment s'utilitza en aplicacions a l'exterior o en llocs tancats però amb molta llum. Consumeixen molt poc corrent elèctric.

LCD transmissiu[modifica | modifica el codi]

La font de llum està darrere del visualitzador i s'anomena backlight. Són ideals per condicions de baixa lluminositat, però generalment consumeixen força corrent. La majoria de pantalles d'ordinadors portàtils utilitzen aquest tipus de LCD.

LCD transreflectiu[modifica | modifica el codi]

És una combinació dels dos anteriors. Hi ha un mirall darrere del polaritzador que reflecteix i deixa passar la llum indistintament. D'aquesta manera és possible reflectir la llum exterior i al mateix temps deixar passar la llum del backlight que il·lumina des del darrere. Són molt útils perquè es poden adaptar a una gran varietat de condicions de lluminositat ambient. Una de les seves aplicacions són les pantalles de telèfons mòbils.

Mètodes d'adreçament[modifica | modifica el codi]

LCD de matrius activa i passiva

L'adreçament consisteix a aplicar voltatges als cristalls líquids, per variar-ne les propietats de la llum, i poder generar així les diferents imatges. Es diferencien dos tipus de adreçaments: l'adreçament directe, i l'adreçament per matriu de punts. L'adreçament per segments (o directe) es fa servir en displays molt simples, com els emprats en calculadores, mentre que l'adreçament per matriu de punts, es fa servir en diplays d'alta resolució, com poden ser els dels portàtils i els monitors TFT.

Mitjançant el mètode d'adreçament directe, cada segment o píxel requereix un punt de connexió i un conductor unit a l'excitador. És per això que només s'utilitza quan el nombre de píxels és reduït: rellotges, calculadores...

Dins de l'adreçament per matriu de punts s'ha de distingir entre els displays de matriu activa i els de matriu passiva.

LCD de matriu passiva[modifica | modifica el codi]

En els LCD de matriu passiva (PMLCD) no existeixen elements de commutació, i per tant, cada píxel s'adreça per un temps superior al temps de frame. S'utilitza una matriu d'elèctrodes. Les línies de la part frontal estan desfasades 90º respecte de les de l'elèctrode vertical i els punts d'intersecció entre les línies són els que ens creen la imatge. Per activar un píxel s'apliquen tensions proporcionals a la fila i columna.

Amb aquest tipus de monitors es produeixen dos efectes indesitjats: un temps de resposta elevat i una pèrdua de contrast. Aquests són atribuïbles a la pèrdua del voltatge aplicat al llarg del temps sobre el cristall líquid. Aquesta pèrdua resulta en un negre de més lluminositat i per tant menys contrast.

Per altra banda per aconseguir el voltatge eficaç necessari per polaritzar el cristall líquid, seran necessaris diversos polsos consecutius, el que ens porta a la necessitat d'utilitzar més frames per una imatge, disminuint la capacitat de resposta del monitor. Al tenir línies llargues i properes de píxels, es produeix un acoblament que provoca l'adreçament de píxels no desitjats, obtenint una imatge borrosa. Aquest display és barat i relativament fàcil de construir però només s'utilitza quan el nombre de files és reduït.

LCD de matriu activa[modifica | modifica el codi]

Article principal: LCD de matriu activa

Utilitza una matriu d'elements commutadors no lineals, transistors de pel·lícula fina (thin film transistors- TFT) i condensadors. Cada píxel està compost per un transistor i un condensador. Contràriament als LCD de matriu passiva, els LCD de matriu activa no tenen cap limitació inherent al nombre de files, a més de presentar una interferència a píxels veïns (cross-talk) molt menor.

Per seleccionar un píxel específic, la fila apropiada és encesa i llavors s'envia una càrrega a la columna correcta. Com que les altres files que es creuen amb la columna estan apagades només el condensador assignat rep la càrrega i la reté fins al proper refresc. Controlant el voltatge subministrat al cristall, es pot regular la intensitat de color en 256 nivells de brillantor per píxel.

LCD de color[modifica | modifica el codi]

Un LCD per mostrar imatges en color necessita tenir tres subpíxels que continguin filtres vermell, verd i blau per generar cada píxel de color.

Mitjançant un control exhaustiu de la variació de voltatge aplicat, es pot controlar la intensitat de cada subpíxel en un rang de fins a 256 tonalitats. Combinant adequadament els subpíxels es pot generar una taula de fins a 16,8 milions de colors (256 tonalitats vermelles x 256 tonalitats verdes x 256 tonalitat blaves). D'aquesta manera s'obté, amb la combinació dels tres colors primaris i les variacions d'intensitat, la sensació de color aparent desitjada.

Cada subpíxel té el seu propi transistor/condensador, el problema bàsic és que cada microtransistor danyat representa un píxel que no treballarà apropiadament. La majoria de pantalles #LCD de matriu activa presenten alguns píxels en mal estat, ja que la quantitat de transistors continguts és molt elevada.

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Pantalla de cristall líquid