Binomi de Newton

De Viquipèdia
Dreceres ràpides: navegació, cerca


El Binomi de Newton o teorema del binomi serveix per a calcular les potències d'un binomi mitjançant nombres combinatoris i ens indica que:

,

on el coeficient binomial és definit així : .

Exemples:

  • per  :
  • per  :

Demostració[modifica | modifica el codi]

Raonament combinatori[modifica | modifica el codi]

Tenint en compte que en l'expressió a es pot escriure com el producte de n binomis, , on cada . El desenvolupament de a és la suma de tots els productes formats agafant un terme – ja sigui x o y – de cada . Per exemple, el terme en el desenvolupament de a s'obté seleccionant x en cada .

El coeficient que multiplica cada terme del desenvolupament de a queda determinat per la quantitat de formes diferents que hi ha per triar termes tals que el seu producte és de la mateixa forma que el terme (excloent el coeficient). En el cas de . t es pot formar a a a base d'agafar y d'un dels i x de tota la resta. Hi ha n formes de seleccionar un per obtenir la y; per tant t s'obté de n formes diferents en el desenvolupament de a, per tant el seu coeficient és n. En general, per , hi ha

Formes diferents de seleccionar els per obtenir els ys (doncs k ys se seleccionen a partir de n ), i per tant aquest ha de ser el coeficient per t.

Demostració algebraica[modifica | modifica el codi]

Una altra forma de demostrar el teorema binomial és per inducció. Quant n = 0, es té

Per hipòtesi d'inducció se suposa que el teorema és veritat quant l'exponent val m. Llavors per n = m + 1

Aplicant la propietat distributiva

Traient fora del sumatori el terme k = 0

fent j = k − 1

Traient fora del sumatori de la dreta el terme k = m + 1

Combinant els sumatoris

Aplicant la regla de Pascal

Afegint dins dels sumatori els termes m + 1.

Vegeu també[modifica | modifica el codi]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Binomi de Newton Modifica l'enllaç a Wikidata