Mitjana aritmètico-geomètrica

De Viquipèdia
Dreceres ràpides: navegació, cerca

En matemàtiques, la mitjana aritmètico-geomètrica (AGM) de dos nombres reals positius x i y es defineix tal com segueix.

Primer calculeu la mitjana aritmètica de x i y i digueu-ne a1. Després calculeu la mitjana geomètrica de x i y i digueu-ne g1; això és l'arrel quadrada del producte xy:

a1 = (x + y) / 2
g1 = √(xy).

Llavors itereu l'operació amb a1 en lloc de x i g1 en lloc de y. D'aquesta forma es defineixen dues successions (an) i (gn):

a_{n+1} = \frac{a_n + g_n}{2}
g_{n+1} = \sqrt{a_n g_n}.

Aquestes dues successions convergeixen al mateix nombre, el qual és la mitjana aritmètico-geomètrica de x i y; i s'escriu M(x, y), o de vegades agm(x, y).

Exemple[modifica | modifica el codi]

Per a trobar la mitjana aritmètico-geomètrica de a0 = 24 i g0 = 6, primer es calculen les seves mitjanes aritmètica i geomètrica:

a_1=\frac{24+6}{2}=15,
g_1=\sqrt{24 \times 6}=12,

I llavors s'itera:

a_2=\frac{15+12}{2}=13.5,
g_2=\sqrt{15 \times 12}=13.41640786500\dots etc.

Les primeres quatre iteracions donen els següents resultats:

n an gn
0 24 6
1 15 12
2 13.5 13.41640786500...
3 13.45820393250... 13.45813903099...
4 13.45817148175... 13.45817148171...

La mitjana aritmètico-geomètrica de 24 i 6 és el límit comú d'aquestes dues successions que és aproximadament 13.45817148173.

Propietats[modifica | modifica el codi]

M(x, y) és un nombre entre la mitjana geomètrica i l'aritmètica de x i y; en particular està entre x i y.

Si r > 0, llavors M(rx, ry) = r M(x, y).

Hi ha una expressió que permet calcular la M(x,y) sense haver de trobar el límit de una sèrie:

\Mu(x,y) = \frac{\pi}{4} \cdot \frac{x + y}{K \left( \frac{x - y}{x + y} \right) }

On K(x) és la integral el·líptica completa de primera classe.

Del recíproc de la mitjana aritmètico-geomètrica d'1 i l'arrel quadrada de 2 se'n diu la constant de Gauss.

 \frac{1}{\Mu(1, \sqrt{2})} = G = 0.8346268\dots

En honor de Carl Friedrich Gauss.

La mitjana geomètrico-harmònica es pot calcular emprant un mètode anàleg, a base de fer servir successions de mitjanes geomètriques i harmòniques. També es pot definir de forma similar la mitjana aritmètico-harmònica, però porta al mateix valor que la mitjana geomètrica.

Implementació en Python[modifica | modifica el codi]

El següent codi exemple en Python calcula la mitjana aritmètico-geomètrica de dos nombres reals positius:

from math import sqrt

def avg(a, b, delta=None):
        if None==delta:
                delta=(a+b)/2*1E-10
        if(abs(b-a)>delta):
                return avg((a+b)/2.0, sqrt(a*b), delta)
        else:
                return (a+b)/2.0

Vegeu també[modifica | modifica el codi]

Referències[modifica | modifica el codi]

  • Jonathan Borwein, Peter Borwein, Pi and the AGM. A study in analytic number theory and computational complexity. Reprint of the 1987 original. Canadian Mathematical Society Series of Monographs and Advanced Texts, 4. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998. xvi+414 pp. ISBN 0-471-31515-X MR 1641658