Nombre gairebé primer

De Viquipèdia
Dreceres ràpides: navegació, cerca

En teoria de nombres, un nombre natural s'anomena k-gairebé primer si i només si té exactament k factors primers, tenint en compte la seva multiplicitat. Més formalment, un nombre n k-gairebé primer si i només si Ω(n) = k, on Ω(n) és la quantitat total de nombres primers en descomposició en factors primers n:

\Omega(n) := \sum a_i \qquad\mbox{si}\qquad n = \prod p_i^{a_i}.

Per tant un nombre natural és un nombre primer si i només si és 1-gairebé primer, i semiprimer si i només si és 2-gairebé primer. El conjunt de nombres k-gairebé primers normalment es nota per Pk. El nombre k gairebé primer més petit és 2k. Els primers nombres k-gairebé primers són:

k k-gairebé primers Successió EESE[1]
1 2, 3, 5, 7, 11, 13, 17, 19, … A000040
2 4, 6, 9, 10, 14, 15, 21, 22, … A001358
3 8, 12, 18, 20, 27, 28, 30, … A014612
4 16, 24, 36, 40, 54, 56, 60, … A014613
5 32, 48, 72, 80, 108, 112, … A014614
6 64, 96, 144, 160, 216, 224, … A046306
7 128, 192, 288, 320, 432, 448, … A046308
8 256, 384, 576, 640, 864, 896, … A046310
9 512, 768, 1152, 1280, 1728, … A046312
10 1024, 1536, 2304, 2560, … A046314
11 2048, 3072, 4608, 5120, … A069272
12 4096, 6144, 9216, 10240, … A069273
13 8192, 12288, 18432, 20480, … A069274
14 16384, 24576, 36864, 40960, … A069275
15 32768, 49152, 73728, 81920, … A069276
16 65536, 98304, 147456, … A069277
17 131072, 196608, 294912, … A069278
18 262144, 393216, 589824, … A069279
19 524288, 786432, 1179648, … A069280
20 1048576, 1572864, 2359296, … A069281

El nombre πk(n) d'enters positius més petits o iguals que n amb, com a màxim, k divisors primers (no necessàriament diferents) tendeix asimptòticament a[2]

 \pi_k(n) \sim \left( \frac{n}{\log n} \right) \frac{(\log\log n)^{k-1}}{(k - 1)!},

un resultat de Landau. Vegeu també el teorema de Hardy–Ramanujan.

Referències[modifica | modifica el codi]

  1. L'Enciclopèdia electrònica de successions d'enters
  2. Tenenbaum, Gerald. Cambridge University Press. Introduction to Analytic and Probabilistic Number Theory, 1995. ISBN 0521412617. 

Enllaços externs[modifica | modifica el codi]