Gen: diferència entre les revisions

De la Viquipèdia, l'enciclopèdia lliure
Contingut suprimit Contingut afegit
He afegit un paragraf sobre Estructura dels gens
Nou paràgraf: Definicio funcional de gen (traducció de l'anglès amb petites modificacions)
Línia 19: Línia 19:


La majoria de gens humans de proteïnes contenen '''introns''', regions que es transcriuen i per tant formen part del pre-mRNA o transcrit primari, però que es degraden en la maduració del mRNA. El procés d’eliminació dels introns s’anomena '''[[Splicing|splicing o empalmament]]'''. Un mateix pre-mRNA pot patir splicing de maneres diferents. Aquest procés, anomenat '''[[splicing alternatiu]]''' <ref>{{Ref-publicació|article=Expansion of the eukaryotic proteome by alternative splicing|url=https://pubmed.ncbi.nlm.nih.gov/20110989/|publicació=Nature|data=2010-01-28|issn=1476-4687|pmc=3443858|pmid=20110989|pàgines=457–463|volum=463|exemplar=7280|doi=10.1038/nature08909|nom=Timothy W.|cognom=Nilsen|nom2=Brenton R.|cognom2=Graveley}}</ref>, es troba molt regulat i és un altre mecanisme de generació de variants de mRNA a partir d’un únic gen.
La majoria de gens humans de proteïnes contenen '''introns''', regions que es transcriuen i per tant formen part del pre-mRNA o transcrit primari, però que es degraden en la maduració del mRNA. El procés d’eliminació dels introns s’anomena '''[[Splicing|splicing o empalmament]]'''. Un mateix pre-mRNA pot patir splicing de maneres diferents. Aquest procés, anomenat '''[[splicing alternatiu]]''' <ref>{{Ref-publicació|article=Expansion of the eukaryotic proteome by alternative splicing|url=https://pubmed.ncbi.nlm.nih.gov/20110989/|publicació=Nature|data=2010-01-28|issn=1476-4687|pmc=3443858|pmid=20110989|pàgines=457–463|volum=463|exemplar=7280|doi=10.1038/nature08909|nom=Timothy W.|cognom=Nilsen|nom2=Brenton R.|cognom2=Graveley}}</ref>, es troba molt regulat i és un altre mecanisme de generació de variants de mRNA a partir d’un únic gen.

== Definició funcional de gen ==
És difícil definir exactament quina secció d’una seqüència d’ADN comprèn un gen <ref>{{Ref-publicació|article=Definition of historical models of gene function and their relation to students’ understanding of genetics|url=https://doi.org/10.1007/s11191-006-9064-4|publicació=Science & Education|data=2007-08-01|issn=1573-1901|pàgines=849–881|volum=16|exemplar=7|doi=10.1007/s11191-006-9064-4|llengua=en|nom=Niklas Markus|cognom=Gericke|nom2=Mariana|cognom2=Hagberg}}</ref><ref>{{Ref-publicació|article=Defining functional DNA elements in the human genome|nom=Manolis|nom5=Anshul|cognom4=Bernstein|nom4=Bradley E.|cognom3=Snyder|nom3=Michael P.|cognom2=Wold|nom2=Barbara|cognom=Kellis|doi=10.1073/pnas.1318948111|url=https://pubmed.ncbi.nlm.nih.gov/24753594/|exemplar=17|volum=111|pàgines=6131–6138|pmid=24753594|pmc=4035993|issn=1091-6490|data=2014-04-29|publicació=Proceedings of the National Academy of Sciences of the United States of America|cognom5=Kundaje}}</ref>. Una definició clara, però incomplerta funcionalment, és la d’aquella regió del genoma que es transcriu de forma regulada donant lloc a un producte funcional, inicialment RNA, de vegades proteïna en segona instància <ref>{{Ref-web|títol=Sandwalk: What Is a Gene?|url=https://sandwalk.blogspot.com/2007/01/what-is-gene.html|data=2007-01-28|consulta=2021-03-18|nom=Larry|cognom=Moran}}</ref>. Aquesta definició no inclou la majoria de regions reguladors de la transcripció (els promotors o els amplificadors) que generalment es troben fora de les regions transcrites d’un gen. De fet les regions reguladores d'un gen com els potenciadors no necessàriament han d'estar a prop de la seqüència codificadora de la molècula lineal perquè l'ADN que intervé es pot connectar en bucle per apropar el gen i la seva regió reguladora. Les regions reguladores poden fins i tot estar en cromosomes completament diferents i operar en trans per permetre que les regions reguladores d’un cromosoma entrin en contacte amb gens diana d’un altre cromosoma <ref>{{Ref-publicació|article=Interchromosomal associations between alternatively expressed loci|cognom=Spilianakis|nom5=Richard A.|cognom4=Lee|nom4=Gap Ryol|cognom3=Town|nom3=Terrence|cognom2=Lalioti|nom2=Maria D.|nom=Charalampos G.|url=https://pubmed.ncbi.nlm.nih.gov/15880101/|doi=10.1038/nature03574|exemplar=7042|volum=435|pàgines=637–645|pmid=15880101|issn=1476-4687|data=2005-06-02|publicació=Nature|cognom5=Flavell}}</ref><ref>{{Ref-publicació|article=Interchromosomal association and gene regulation in trans|exemplar=4|nom3=Richard A.|cognom2=Spilianakis|nom2=Charalampos G.|cognom=Williams|nom=Adam|doi=10.1016/j.tig.2010.01.007|volum=26|url=https://pubmed.ncbi.nlm.nih.gov/20236724/|pàgines=188–197|pmid=20236724|pmc=2865229|issn=0168-9525|data=2010-04|publicació=Trends in genetics: TIG|cognom3=Flavell}}</ref>.

Els primers treballs en genètica molecular van suggerir el concepte de que un gen fabrica una proteïna. Aquest concepte, originalment anomenat la hipòtesi d'un gen-un enzim, va sorgir de l’influent article de 1941 de George Beadle i Edward Tatum amb mutants del fong Neurospora crassa <ref>{{Ref-publicació|article=Genetic Control of Biochemical Reactions in Neurospora|url=https://pubmed.ncbi.nlm.nih.gov/16588492/|publicació=Proceedings of the National Academy of Sciences of the United States of America|data=1941-11-15|issn=0027-8424|pmc=1078370|pmid=16588492|pàgines=499–506|volum=27|exemplar=11|doi=10.1073/pnas.27.11.499|nom=G. W.|cognom=Beadle|nom2=E. L.|cognom2=Tatum}}</ref>. El concepte d’un gen-una proteïna s'ha refinat amb la comprensió de que molts gens no codifiquen per proteïnes, els gens de RNAs, i de que molts gens de proteïnes poden donar lloc a més d’una variant de mRNA i molt sovint a mes d’una variant (isoforma) de la proteïna <ref>{{Ref-publicació|article=Genomics. DNA study forces rethink of what it means to be a gene|url=https://pubmed.ncbi.nlm.nih.gov/17569836/|publicació=Science (New York, N.Y.)|data=2007-06-15|issn=1095-9203|pmid=17569836|pàgines=1556–1557|volum=316|exemplar=5831|doi=10.1126/science.316.5831.1556|nom=Elizabeth|cognom=Pennisi}}</ref>.

Per incloure la complexitat d'aquests fenòmens diversos, de vegades es defineix un gen com una unió de seqüències genòmiques que codifiquen un conjunt coherent de productes funcionals potencialment superposats. Aquesta definició classifica els gens pels seus productes funcionals (proteïnes o ARN), en lloc dels seus locis específics d’ADN, i considera els elements reguladors classificats com a regions associades als gens <ref>{{Ref-publicació|article=What is a gene, post-ENCODE? History and updated definition|cognom=Gerstein|nom5=Jiang|cognom4=Zheng|nom4=Deyou|cognom3=Rozowsky|nom3=Joel S.|cognom2=Bruce|nom2=Can|nom=Mark B.|url=https://pubmed.ncbi.nlm.nih.gov/17567988/|doi=10.1101/gr.6339607|exemplar=6|volum=17|pàgines=669–681|pmid=17567988|issn=1088-9051|data=2007-06|publicació=Genome Research|cognom5=Du}}</ref>. En qualsevol cas, la definició de gen continua essent un tema controvertit i no tancat.


== Canvis i modificacions en els gens ==
== Canvis i modificacions en els gens ==

Revisió del 16:43, 18 març 2021

Un gen és una seqüència lineal de nucleòtids d'ADN o ARN que és essencial per a una funció específica, ja sigui en el desenvolupament de l'ésser o en el manteniment d'una funció fisiològica normal. És considerat com la unitat d'emmagatzemament d'informació i unitat d'herència en transmetre aquesta informació a la descendència.[1] De manera habitual, un gen desenvolupa la seva funció mitjançant la transcripció (procés pel qual la informació gènica es "reescriu" com un ARN missatger) i la traducció (procés pel qual la informació gènica de l'ARN missatger es fa servir per a construir una proteïna, la que desenvolupa directament la funció). Tot i això, en alguns casos, la realització de la funció no requereix necessàriament la transcripció ni la traducció. Els gens estan localitzats dins els cromosomes, al nucli cel·lular, i es disposen en línia al llarg de cadascun dels cromosomes. Cada gen ocupa dins el cromosoma una posició determinada anomenada locus. El conjunt de gens d'una espècie s'anomena genoma.

Tipus de gens

1. Gens estructurals, que codifiquen per a proteïnes que podrien ésser reguladores de gens, o codifiquen ARN específic que només és transcrit. Molts gens es troben constituïts per regions codificants (exons) interrompudes per regions no codificants que no contenen informació (introns), i que són eliminades en la maduració de l'ARN (splicing), tot i que aquesta és una característica exclusiva dels eucariotes. La seqüència de bases present en l'ARN determina la seqüència d'aminoàcids de la proteïna per mitjà del codi genètic.

2. Gens reguladors no transcriptadors, com:

  1. Gens o seqüències de replicació que especifiquen el lloc d'iniciació i d'acabament de la replicació de l'ADN.
  2. Gens de recombinació que proporcionen els llocs d'unió per als enzims de recombinació.
  3. Gens de segregació que són els llocs específics perquè, mentre dura la meiosi, les fibres del fus mitòtic s'adhereixin als cromosomes durant la segregació en mitosi i meiosi.
  4. Gens de seqüències de l'ADN que reconeixen i interaccionen com a proteïnes, hormones i altres molècules.
  5. Seqüències de repetició i seqüències sense sentit.

Estructura

L’estructura d’un gen eucariota de proteïnes consta de diversos elements. La seqüència que codifica per proteïnes (CDS, ORF) suposa només una petita part dins d’un gen, donat que hi ha a més regions reguladores que no es transcriuen (promotors, amplificadors), regions que es transcriuen però no formen part del mRNA madur (introns) i regions que formen part del mRNA madur però que no es tradueixen (regions UTR [2]).

A prop de l’inici de transcripció del gen, sobretot en direcció 5’, els gens contenen seqüències reguladores de la transcripció, que majortitàriament no es transcriuen però formen part del gen en sentit funcional. Aquí trobem el promotor, que és reconegut per factors de transcripció que recluten i ajuden a l'ARN polimerasa a unir-se a la regió per iniciar la transcripció. Un gen pot tenir més d'un promotor, donant lloc a variants de ARNm que difereixen en l'extrem 5 ' [3]. Aquest mecanisme de generació de variants de mRNA a partir d’un mateix gen s’anomena “promotors alternatius” o “TSS alternatius[4][5]. De la mateixa manera, un gen pot tenir diferents finals de transcripció, el que dona lloc també a diferents variants de mRNA. Aquest mecanisme s’anomena “poliadenil·lació alternativa” [6].

A més del promotor que es troba adjacent a l’inici de transcripció, els gens poden tenir regions reguladores moltes allunyades de l’inici de transcripció. Aquestes regions reguladores distals poden ser potenciadores o silenciadores i actuen unint-se a factors de transcripció que fan que aquesta regió de l'ADN s'aproximi al lloc d'unió de l'ARN polimerasa. Les regions potenciadores distals augmenten la transcripció unint-se a una proteïna activadora que després ajuda a reclutar l'ARN polimerasa al promotor; per contra, les regions silenciadores distals s'uneixen a proteïnes repressores i fan que l'ADN estigui menys disponible per a l'ARN polimerasa [7][8].

La majoria de gens humans de proteïnes contenen introns, regions que es transcriuen i per tant formen part del pre-mRNA o transcrit primari, però que es degraden en la maduració del mRNA. El procés d’eliminació dels introns s’anomena splicing o empalmament. Un mateix pre-mRNA pot patir splicing de maneres diferents. Aquest procés, anomenat splicing alternatiu [9], es troba molt regulat i és un altre mecanisme de generació de variants de mRNA a partir d’un únic gen.

Definició funcional de gen

És difícil definir exactament quina secció d’una seqüència d’ADN comprèn un gen [10][11]. Una definició clara, però incomplerta funcionalment, és la d’aquella regió del genoma que es transcriu de forma regulada donant lloc a un producte funcional, inicialment RNA, de vegades proteïna en segona instància [12]. Aquesta definició no inclou la majoria de regions reguladors de la transcripció (els promotors o els amplificadors) que generalment es troben fora de les regions transcrites d’un gen. De fet les regions reguladores d'un gen com els potenciadors no necessàriament han d'estar a prop de la seqüència codificadora de la molècula lineal perquè l'ADN que intervé es pot connectar en bucle per apropar el gen i la seva regió reguladora. Les regions reguladores poden fins i tot estar en cromosomes completament diferents i operar en trans per permetre que les regions reguladores d’un cromosoma entrin en contacte amb gens diana d’un altre cromosoma [13][14].

Els primers treballs en genètica molecular van suggerir el concepte de que un gen fabrica una proteïna. Aquest concepte, originalment anomenat la hipòtesi d'un gen-un enzim, va sorgir de l’influent article de 1941 de George Beadle i Edward Tatum amb mutants del fong Neurospora crassa [15]. El concepte d’un gen-una proteïna s'ha refinat amb la comprensió de que molts gens no codifiquen per proteïnes, els gens de RNAs, i de que molts gens de proteïnes poden donar lloc a més d’una variant de mRNA i molt sovint a mes d’una variant (isoforma) de la proteïna [16].

Per incloure la complexitat d'aquests fenòmens diversos, de vegades es defineix un gen com una unió de seqüències genòmiques que codifiquen un conjunt coherent de productes funcionals potencialment superposats. Aquesta definició classifica els gens pels seus productes funcionals (proteïnes o ARN), en lloc dels seus locis específics d’ADN, i considera els elements reguladors classificats com a regions associades als gens [17]. En qualsevol cas, la definició de gen continua essent un tema controvertit i no tancat.

Canvis i modificacions en els gens

La informació genètica es pot modificar mitjançant l'aparició de mutacions.[18] Aquestes mutacions no sempre són perjudicials, i poden fer que per a cada gen existeixin diverses "versions", que reben el nom d'al·lels. Els organismes diploides (com les plantes i els animals) tenen dos jocs complets de cromosomes homòlegs, i, per tant, dues còpies de cada gen que poden diferir lleugerament entre elles. Quan un individu té les dues còpies d'un gen idèntiques, diem que és homozigot, i quan té les dues còpies diferents (al·lels diferents) diem que és heterozigot. Tal com ja establiren les investigacions de Mendel, els al·lels poden ésser dominants o recessius. Quan una sola còpia d'un al·lel és suficient perquè aquest al·lel es manifesti en el fenotip, diem que aquest al·lel és dominant. Els al·lels que només es manifesten quan n'hi ha dues còpies reben el nom de recessius.

Alguns gens han sofert processos de duplicació i mutació o altres fenòmens de reorganització i han deixat d'ésser funcionals, però romanen en els genomes dels éssers vius. En no desenvolupar ja una funció, reben el nom de pseudogens, i se solen assemblar a altres gens de l'organisme que sí que són funcionals. Sovint, les mutacions que els han convertit en pseudogens només afecten la seva expressió gènica. Els pseudogens constitueixen un recurs evolutiu per a l'espècie, ja que són regions d'ADN quasifuncionals que poden rebre mutacions (i generar noves funcions) sense que això afecti les funcions que ja es desenvolupen en l'organisme.

Referències

  1. «Gen - EcuRed». [Consulta: 24 juny 2019].
  2. Mignone, Flavio; Gissi, Carmela; Liuni, Sabino; Pesole, Graziano «Untranslated regions of mRNAs». Genome Biology, 3, 3, 2002, pàg. REVIEWS0004. DOI: 10.1186/gb-2002-3-3-reviews0004. ISSN: 1474-760X. PMID: 11897027.
  3. Mortazavi, Ali; Williams, Brian A.; McCue, Kenneth; Schaeffer, Lorian; Wold, Barbara «Mapping and quantifying mammalian transcriptomes by RNA-Seq». Nature Methods, 5, 7, 2008-07, pàg. 621–628. DOI: 10.1038/nmeth.1226. ISSN: 1548-7105. PMID: 18516045.
  4. Davuluri, Ramana V.; Suzuki, Yutaka; Sugano, Sumio; Plass, Christoph; Huang, Tim H.-M. «The functional consequences of alternative promoter use in mammalian genomes». Trends in genetics: TIG, 24, 4, 2008-04, pàg. 167–177. DOI: 10.1016/j.tig.2008.01.008. ISSN: 0168-9525. PMID: 18329129.
  5. Pal, Sharmistha; Gupta, Ravi; Kim, Hyunsoo; Wickramasinghe, Priyankara; Baubet, Valérie «Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development». Genome Research, 21, 8, 2011-08, pàg. 1260–1272. DOI: 10.1101/gr.120535.111. ISSN: 1549-5469. PMC: 3149493. PMID: 21712398.
  6. Zhang, Yi; Liu, Lian; Qiu, Qiongzi; Zhou, Qing; Ding, Jinwang «Alternative polyadenylation: methods, mechanism, function, and role in cancer». Journal of experimental & clinical cancer research: CR, 40, 1, 01-02-2021, pàg. 51. DOI: 10.1186/s13046-021-01852-7. ISSN: 1756-9966. PMC: 7852185. PMID: 33526057.
  7. Maston, Glenn A.; Evans, Sara K.; Green, Michael R. «Transcriptional regulatory elements in the human genome». Annual Review of Genomics and Human Genetics, 7, 2006, pàg. 29–59. DOI: 10.1146/annurev.genom.7.080505.115623. ISSN: 1527-8204. PMID: 16719718.
  8. Yao, Lijing; Berman, Benjamin P.; Farnham, Peggy J. «Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes». Critical Reviews in Biochemistry and Molecular Biology, 50, 6, 2015, pàg. 550–573. DOI: 10.3109/10409238.2015.1087961. ISSN: 1549-7798. PMC: 4666684. PMID: 26446758.
  9. Nilsen, Timothy W.; Graveley, Brenton R. «Expansion of the eukaryotic proteome by alternative splicing». Nature, 463, 7280, 28-01-2010, pàg. 457–463. DOI: 10.1038/nature08909. ISSN: 1476-4687. PMC: 3443858. PMID: 20110989.
  10. Gericke, Niklas Markus; Hagberg, Mariana «Definition of historical models of gene function and their relation to students’ understanding of genetics» (en anglès). Science & Education, 16, 7, 01-08-2007, pàg. 849–881. DOI: 10.1007/s11191-006-9064-4. ISSN: 1573-1901.
  11. Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul «Defining functional DNA elements in the human genome». Proceedings of the National Academy of Sciences of the United States of America, 111, 17, 29-04-2014, pàg. 6131–6138. DOI: 10.1073/pnas.1318948111. ISSN: 1091-6490. PMC: 4035993. PMID: 24753594.
  12. Moran, Larry. «Sandwalk: What Is a Gene?», 28-01-2007. [Consulta: 18 març 2021].
  13. Spilianakis, Charalampos G.; Lalioti, Maria D.; Town, Terrence; Lee, Gap Ryol; Flavell, Richard A. «Interchromosomal associations between alternatively expressed loci». Nature, 435, 7042, 02-06-2005, pàg. 637–645. DOI: 10.1038/nature03574. ISSN: 1476-4687. PMID: 15880101.
  14. Williams, Adam; Spilianakis, Charalampos G.; Flavell, Richard A. «Interchromosomal association and gene regulation in trans». Trends in genetics: TIG, 26, 4, 2010-04, pàg. 188–197. DOI: 10.1016/j.tig.2010.01.007. ISSN: 0168-9525. PMC: 2865229. PMID: 20236724.
  15. Beadle, G. W.; Tatum, E. L. «Genetic Control of Biochemical Reactions in Neurospora». Proceedings of the National Academy of Sciences of the United States of America, 27, 11, 15-11-1941, pàg. 499–506. DOI: 10.1073/pnas.27.11.499. ISSN: 0027-8424. PMC: 1078370. PMID: 16588492.
  16. Pennisi, Elizabeth «Genomics. DNA study forces rethink of what it means to be a gene». Science (New York, N.Y.), 316, 5831, 15-06-2007, pàg. 1556–1557. DOI: 10.1126/science.316.5831.1556. ISSN: 1095-9203. PMID: 17569836.
  17. Gerstein, Mark B.; Bruce, Can; Rozowsky, Joel S.; Zheng, Deyou; Du, Jiang «What is a gene, post-ENCODE? History and updated definition». Genome Research, 17, 6, 2007-06, pàg. 669–681. DOI: 10.1101/gr.6339607. ISSN: 1088-9051. PMID: 17567988.
  18. «gene | Definition, Structure, Expression, & Facts» (en anglès). [Consulta: 24 juny 2019].

Vegeu també

Enllaços externs

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Gen