El·lipse

De Viquipèdia
Dreceres ràpides: navegació, cerca
El·lipse

Una el·lipse[1] és el lloc geomètric dels punts del pla per als quals és constant la suma de les distàncies a dos punts interiors fixos denominats focus, que regeixen l'excentricitat de l'el·lipse:

L'equació d'una el·lipse centrada en el punt (0,0) és:

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1

on a és la semidistància de l'eix d'abscisses de l'el·lipse, mentre que b és la semidistància sobre l'eix d'ordenades.

L'àrea d'aquesta el·lipse és:

\grave{A} rea=\pi \cdot a \cdot b

Si a=b, l'el·lipse és un cercle, i llavors la seva àrea és simplement π·a2.

L'excentricitat de l'el·lipse (e) s'obté:[1]

e=\frac{c}{a}
on c^2=a^2-b^2

L'el·lipse és la corba cònica tancada que s'obté en la intersecció d'una superfície cònica amb un pla oblic a l'eix del con quan aquest pla no és paral·lel a cap generatriu del con.[1]

Vegeu també[modifica | modifica el codi]

Referències[modifica | modifica el codi]

  1. 1,0 1,1 1,2 «El·lipse». L'Enciclopèdia.cat. Barcelona: Grup Enciclopèdia Catalana.
A Wikimedia Commons hi ha contingut multimèdia relatiu a: El·lipse Modifica l'enllaç a Wikidata