Teorema de Ceva

De Viquipèdia
Salta a la navegació Salta a la cerca
Aquest triangle representa la situació del teorema de Ceva, on les tres rectes concurreixen en un punt. Es pot comprovar que es compleix la fórmula del teorema.

En geometria, el teorema de Ceva estableix que, en un triangle qualsevol, tres rectes que van des de cada vèrtex del triangle al costat oposat o a la seva prolongació són concurrents (es tallen en un punt) si i només si

[1]

on cada parell de lletres representa un segment en el triangle, com es pot veure a la figura de la dreta.[2]

També existeix en forma trigonomètrica una manera d'expressar el teorema de Ceva. Ax', By' i Cz' són concurrents si i només si

El teorema va ésser demostrat per Giovanni Ceva a la seva obra De lineis rectis del 1678, però ja havia estat demostrat molt abans per Yússuf ibn Àhmad al-Mútaman, un emir de Saraqusta del segle XI.[3]

Hi ha diferents elements geomètrics que estan associats a aquest teorema i tenen un nom que es deriva del de Ceva, com la ceviana (els segments Ax, By i Cz són les cevianes del triangle, concurrents en el punt P) o bé el triangle cevià (el triangle xyz és el triangle cevià de P).

El teorema de Ceva és molt similar al teorema de Menelau en el sentit que tenen equacions que difereixen només en el signe. A més, la representació gràfica d'un és la dual de l'altra. Cadascun pot demostrar-se a partir de l'altre.[4]

Referències[modifica]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Teorema de Ceva Modifica l'enllaç a Wikidata
  1. Domenech Larraz, Jaume. «Teorema de Ceva». euclides.org, 2002/2003. [Consulta: 3 juny del 2009].
  2. Bofill Capell, Lluís. «Teorema de Ceva». La geometria del triangle, 2008. [Consulta: 3 juny del 2009].
  3. Gutierrez, Antonio. «Ceva's Theorem» (en anglès), 2005. [Consulta: 3 juny del 2009].
  4. John R. Silvester. «Ceva = (Menelaus)²». Londres: Department of Mathematics, King's College Strand, 21-06-1999. [Consulta: 8 novembre 2009].