Teorema de l'Huilier

De Viquipèdia
Jump to navigation Jump to search
Notacions en un triangle esfèric

En trigonometria esfèrica, el teorema de l'Huilier relaciona l'àrea d'un triangle esfèric amb la longitud dels seus costats; per tant, constitueix una generalització de la fórmula d'Heró a una geometria no euclidiana. El seu nom es deu al matemàtic suís Simon L'Huilier (1750-1840).

En un triangle esfèric (vegeu figura adjunta) dibuixat sobre l'esfera de raidi R, del qual els costats tenen dimensions angulars a, b i c, s'escriu el semiperímetre

.

El teorema de l'Huilier estipula que la superfície del triangle val

.

La fórmula d'Heró és el cas límit de la igualtat de damunt quan la curvatura de l'esfera es fa prou petita (el radi tendeix a infinit) i s'acosta a la geometria euclidiana: en efecte, quan a, b i c es fan petits respecte a 1 (R és gran respecte a BC, AC i AB) l'aproximació

es pot admetre i l'expressió anterior esdevé la fórmula d'Heró.

Vegeu també[modifica]

Bibliografia[modifica]