Radi de Schwarzschild

De Viquipèdia

En Relativitat General, el radi de Schwarzschild és el radi mínim que ha de tenir un astre per tal que la llum pugui escapar de la seva superfície vers l'espai exterior.[1] Per sota d'aquest límit la força gravitatòria entre les seves partícules causaran un col·lapse gravitacional irreversible, seria el final del estels més massius que esdevenen un forat negre.[2]

Schwarzschild va treballar per a trobar una solució a les equacions de camp d'Einstein, per a trobar una solució a la curvatura de l'espaitemps al voltant d'una massa puntual, i més tard ho va aplicar al cas d'una massa esfèrica, trobant que hi havia un radi on hi havia una singularitat, una distància on alguns del valors que descriuen el camp gravitatori esdevenen infinits.[3] Aquest radi, avui dia conegut com a radi de Schwarzschild, vindrà donat per la següent equació:[1]

on

és la massa de l'objecte
és la constant de la gravitació
és la velocitat de la llum

Història[modifica]

La teoria de la relativitat general va ser enunciada l'any 1915 per Albert Einstein (1879 - 1955), el 25 de novembre del 2015 va publicar l'article Erklärung der Perihelbewegung des Merkur aus der allgemeinen Realtivitätstheorie (Explicació del moviment del periheli de Mercuri a partir de la Teoria General de la Relativitat) on feia dos càlculs aproximats del moviment del periheli de Mercuri com a confirmació de la validesa de la Relativitat General.[4] El 22 de desembre de 2015, Karl Schwarzschild (1873 – 1916) li va enviar una carta molt crítica on hi exposava els seus propis càlculs amb la que considerava la solució exacta.[5][6]

El gener de 1916, Schwarzschild, va publicar l'article Über das Gravitations-feld eines Massenpunktes nach der Einsteinschen Theorie (Sobre el camp gravitatori d'una massa puntual segons la Teoria d'Einstein) a la revista Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (Actes de la Reial Acadèmia Prussiana de Ciències) on formulava la seva solució exacta al problema del periheli de Mercuri que havia avançat per carta a Einstein.[7] Einstein va repondre per carta lloant la seva solució i les matemàtiques que havia utilitzat.[8]

El febrer de 1916, va publicar l'article Über das Gravitations-feld einer Kugel aus incompressiebler Flüssigkeit nach der Einsteinschen Theorie (Sobre el camp gravitatori d'una esfera de líquid imcompressible segons la Teoria d'Einstein) a la revista Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, on va aplicar la mètrica exposada al seu article anterior, sobre el camp gravitatori produït per una massa puntual, a una esfera de fluid incompressible i va formular les condicions físiques de la degradació d'aquest camp.[9] Schwarzschild moriria pocs mesos més tard, el maig de 1916.

Els treballs esmentats foren escrits a Rússia, on Schwarzschild servia a l'exèrcit alemany en el context de la Primera Guerra Mundial. El primer conté una solució exacta de les equacions de camp d'Einstein, la mètrica de Schwarzschild, i el segon, derivat del primer, conté la descripció del que més tard es coneixeria com a radi de Schwarzschild.[10]

El radi de Schwarzschild i els forats negres[modifica]

Durant molt de temps el radi de Schwarzschild no fou més que una curiositat matemàtica de la mètrica de Schwarzschild, però durant la dècada del 1960 això va canviar amb el desenvolupament de les idees de l'evolució estel·lar, el col·lapse gravitatori d'alguns tipus d'estels i els forats negres.

El radi de Schwarzschild té un paper molt important en l'estudi dels forats negres, un objecte celeste esdevindrà un forat negre si es contrau prou com per que el seu radi quedi per sota del seu radi de Schwarzschild.[11] Quan el radi d'un objecte és superior al seu radi de Schwarzschild la llum pot sortir de la seva superfície perquè la seva velocitat serà superior a la velocitat d'escapament de l'objecte. En canvi, si el radi de l'objecte és menor que el seu radi de Schwarzschild, el seu horitzó d'esdeveniments, la velocitat de la llum serà menor que la velocitat d'escapament de l'objecte i la llum no podrà sortir.[12]

Coneixent la massa d'un objecte, en podem calcular el seu radi de Schwarzschild atès que ja coneixem el valor de la constant de la gravitació i de la velocitat de la llum. En el cas del Sol, un estel amb una massa d'uns 1,9885·103 kg[13] tenim:[14]

El mateix podem fer per a qualsevol objecte, per exemple, en el cas de la Terra, amb una massa d'uns 5,97237·1024 kg,[15] tenim:

Cal fer notar que un cop tenim calculat el valor de l' del Sol el podem utilitzar per a simplificar el càlcul del radi d'altres objectes. Si multipliquem el radi de Schwarzschild del Sol, , per la massa de l'objecte i ho dividim tot per la massa del Sol , tindrem el mateix resultat que aplicant la fórmula anterior. És a dir:[16]

A principis del segle xx, quan Schwarzschild va desenvolupar la seva solució a les equacions de la Relativitat General, tots els objectes coneguts tenien un radi, , molt més gran que el seu radi de Schwarzschild, , i es va considerar com una curiositat matemàtica, sense cap significat físic. No va ser fins que els treballs de Subrahmanyan Chandrasekhar (1910 - 1995) i Robert Oppenheimer (1904 - 1967) van demostrar que els estels més massius podien patir un col·lapse gravitatori que els farien esdevenir de la mida del seu radi de Schwarzschild o més petits, que els físics van començar a prendre's seriosament les conseqüències que se'n desprenien.[17]

La idea que hi ha implícita en la mètrica de Schwarzschild, és que la velocitat d'escapament necessària per tal d'escapar de l'efecte del camp gravitatori d'un objecte hauria de ser més gran que la velocitat de la llum si el radi de l'objecte és més petit que

Per tant, donat que la velocitat de la llum no pot ser superada, un objecte amb un radi inferior hauria de ser negre, en no deixar sortir la llum.

La forma habitual de la solució de Schwarzschild a les equacions de camp d'Einstein va ser introduïda un any més tard pel matemàtic alemany David Hilbert (1862 – 1943):[18]

On i són les coordenades de temps, de radi, colatitud i latitud respectivament. Unes quantitats mesurables per a un observador.

Quan el radi s'aporxima al radi de Schwarzschild , és a dir a , la coordenada de temps desapareix i la coordenada radial divergeix.

D'aquí es desprèn que[17]


Si camp gravitatori feble

Si camp gravitatori fort

Quan el radi de l'objecte és força més gran que el seu de radi Schwarzschild , llavors el quocient de per és força més petit que la unitat i el camp gravitatori de l'objecte és feble. Seria el cas de la majoria d'objectes astrofísics que coneixem.

D'altra banda, quan el radi de l'objecte és similar al seu de radi Schwarzschild , llavors el quocient de per és similar a la unitat i el seu camp gravitatori és fort. Seria el cas dels forats negres.

Vegeu també[modifica]

Referències[modifica]

  1. 1,0 1,1 «Radi de Schwarzschild». Gran Enciclopèdia Catalana. Barcelona: Grup Enciclopèdia Catalana. [Consulta: 16 desembre 2021].
  2. «Schwarzschild radius» (en anglès). Encyclopædia Britannica. Encyclopædia Britannica, Inc.. [Consulta: 16 desembre 2021].
  3. Kutner, 2003, p. 148.
  4. Vankov, 2010, p. 4.
  5. Vankov, 2010, p. 1-2.
  6. Vankov, 2010, p. 13.
  7. Schwarzschild, Karl «On the Gravitational Field of a Point-Mass, According to Einstein’s Theory». The Abraham Zelmanov Journal. The journal for General Relativity, Gravitation and Cosmology, Volum 1, 2008, pàg. 10. ISSN: 1654-9163.
  8. Suhendro, Indranu «Biography of K. Schwarzschild». The Abraham Zelmanov Journal. The journal for General Relativity, Gravitation and Cosmology, Volum 1, 2008, pàg. xiv-xix. ISSN: 1654-9163.
  9. Schwarzschild, Karl «On the Gravitational Field of a Sphere of Incompressible Liquid, According to Einstein’s Theory». The Abraham Zelmanov Journal. The journal for General Relativity, Gravitation and Cosmology, Volum 1, 2008, pàg. 20-32. ISSN: 1654-9163.
  10. Schwarzschild i Voigt, 1992, p. 23.
  11. Lambourn, 2010, p. 153.
  12. Young i Freedman, 2020, p. 445.
  13. «Sun Fact Sheet» (en anglès). NASA, 23-02-2018. [Consulta: 25 desembre 2021].
  14. Ryder, 2009, p. 149.
  15. «Earth Fact Sheet» (en anglès). NASA, 21-12-2021. [Consulta: 25 desembre 2021].
  16. Keeton, 2014, p. 206.
  17. 17,0 17,1 Keeton, 2014, p. 205.
  18. Lambourn, 2010, p. 172.

Bibliografia[modifica]