Vés al contingut

Funció zeta de Dedekind: diferència entre les revisions

De la Viquipèdia, l'enciclopèdia lliure
Contingut suprimit Contingut afegit
Línia 20: Línia 20:


En general si '' K '' és una [[extensió de Galois]] de ''' Q ''' amb [[grup de Galois]] '' G '', la seva funció zeta de Dedekind té una factorització comparable en termes de [[funció L d'Artin|funcions L de Artin]]. Aquestes estan associades a representacions lineals de '' G ''.
En general si '' K '' és una [[extensió de Galois]] de ''' Q ''' amb [[grup de Galois]] '' G '', la seva funció zeta de Dedekind té una factorització comparable en termes de [[funció L d'Artin|funcions L de Artin]]. Aquestes estan associades a representacions lineals de '' G ''.

== Referències ==
{{Div col|cols=2}}
*{{Citation | last1=Bosma | first1=Wieb | last2=de Smit | first2=Bart | editor1-last=Kohel | editor1-first=David R. | editor2-last=Fieker | editor2-first=Claus | title=Algorithmic number theory (Sydney, 2002) | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Comput. Sci. | isbn=978-3-540-43863-2 | doi=10.1007/3-540-45455-1_6 | mr=2041074 | year=2002 | volume=2369 | chapter=On arithmetically equivalent number fields of small degree | pages=67–79}}
*Section 10.5.1 of {{Citation
| last=Cohen
| first=Henri
| author-link=Henri Cohen (number theorist)
| title=Number theory, Volume II: Analytic and modern tools
| publisher=Springer
| location=New York
| series=[[Graduate Texts in Mathematics]]
| volume=240
| year=2007
| isbn=978-0-387-49893-5
| mr=2312338
| doi=10.1007/978-0-387-49894-2
}}
*{{Citation
| last=Deninger
| first=Christopher
| contribution=''L''-functions of mixed motives
| title=Motives, Part 1
| series=Proceedings of Symposia in Pure Mathematics
| publisher=[[American Mathematical Society]]
| volume=55.1
| year=1994
| pages=517–525
| editor-last=Jannsen
| editor-first=Uwe
| editor2-last=Kleiman
| editor2-first=Steven
| editor3-last=Serre
| editor3-first=Jean-Pierre
| editor3-link=Jean-Pierre Serre
| isbn=978-0-8218-1635-6
| url=http://wwwmath.uni-muenster.de/u/deninger/about/publikat/cd22.ps
}}
*{{Citation
| last=Flach
| first=Mathias
| contribution=The equivariant Tamagawa number conjecture: a survey
| url=http://www.math.caltech.edu/papers/baltimore-final.pdf
| title=Stark's conjectures: recent work and new directions
| publisher=[[American Mathematical Society]]
| series=Contemporary Mathematics
| volume=358
| pages=79–125
| isbn=978-0-8218-3480-0
| editor-last=Burns
| editor-first=David
| editor2-last=Popescu
| editor2-first=Christian
| editor3-last=Sands
| editor3-first=Jonathan
| editor4-last=Solomon
| editor4-first=David| display-editors = 3
}}
*{{citation | last=Martinet | first=J. | chapter=Character theory and Artin L-functions | pages=1-87 | title=Algebraic Number Fields, Proc. Symp. London Math. Soc., Univ. Durham 1975 | editor1-last=Fröhlich | editor1-first=A. | editor1-link=Albrecht Fröhlich | publisher=Academic Press | year=1977 | isbn=0-12-268960-7 | zbl=0359.12015 }}
*{{Citation
| last=Narkiewicz
| first=Władysław
| title=Elementary and analytic theory of algebraic numbers
| edition=3 | at=Chapter 7
| year=2004
| publisher=Springer-Verlag
| location=Berlin
| series=Springer Monographs in Mathematics
| isbn=978-3-540-21902-6
| mr=2078267
}}
{{Div col end}}


== Vegeu també ==
== Vegeu també ==

Revisió del 01:10, 2 maig 2016

En matemàtica, la funció zeta de Dedekind és una sèrie de Dirichlet definida per a tot cos K de nombres algebraics, expressada com on és una variable complexa. És la suma infinita:

realitzada en tots els I ideals de l'anell dels enters de K , amb . On és la norma de I (al camp racional Q ): és igual a la cardinalitat de O K / I , en altres paraules, el nombre de classes de residu mòdul . En el cas en què K = Q aquesta definició es redueix a la funció zeta de Riemann.

Propietats

Les propietats de com una funció meromórfica resulten d'un considerable significat en la teoria de nombres algebraics. Té un producte d'Euler, amb un factor per a un donat nombre primer al producte sobre tots els ideals primers de dividint de

Aquesta és l'expressió en termes analítics de la unicitat de la factorització prima dels ideals .

Se sap (demostrat en forma general primer per Erich Hecke) que té una continuació analítica cap a tot el pla complex com una funció meromorfa, tenint un pol simple només en s = 1. El residu en aquest pol és una quantitat important, que involucra invariants del grup unitari i del grup de classe de K , els detalls es troben a la fórmula de nombre de classe. Hi ha una equació funcional per a la funció zeta de Dedekind, que relaciona els seus valors en s i 1 - s .

Per al cas en què K és una extensió abeliana de Q , la seva funció zeta de Dedekind pot ser escrita com un producte de funcions L de Dirichlet. Per exemple, quan K és un cos quadràtic això mostra que la relació

és una funció L , L ( s , χ); on és un símbol de Jacobi com caràcter de Dirichlet. Que la funció zeta d'un cos quadràtic sigui un producte de la funció zeta de Riemann i una certa funció L de Dirichlet és una formulació analítica de la llei de Gauss de reciprocitat quadràtica.

En general si K és una extensió de Galois de Q amb grup de Galois G , la seva funció zeta de Dedekind té una factorització comparable en termes de funcions L de Artin. Aquestes estan associades a representacions lineals de G .

Referències

Vegeu també

Enllaços externs