Àtom exòtic

De Viquipèdia
Dreceres ràpides: navegació, cerca

Un àtom exòtic és un àtom normal, en el qual s'ha substituït una o més partícules per partícules de la mateixa càrrega. Per exemple, els (electrons) es poden substituir per altres partícules negatives com els muons o pions.[1][2] Com que els nous sistemes són altament inestables, les vides mitjanes dels àtoms exòtics tendeixen a ser extremadament curtes.

Àtoms muònics[modifica | modifica el codi]

En un àtom muònic, se substitueix un electró per un muó, el qual, com l'electró, és un leptó. Ja que els leptons són només sensibles a les forces feble, elctromagnètica i gravitatòria, els àtoms muònics es regeixen per la interacció electromagnètica. No hi ha complicacions degudes a la força forta, que passa entre els leptons i el nucli.

A causa de la major massa d'un muó pel que fa a la d'un electró, les òrbites de Bohr d'aquests àtoms són menors, i les correccions degudes a l'electrodinàmica quàntica són més importants que les d'àtoms normals. L'estudi dels nivells energètics i dels índexs de transició des de estats excitats cap a l'estat fonamental dels àtoms muònics aporta més dades a l'electrodinàmica quàntica.

Àtoms hadrònics[modifica | modifica el codi]

Un àtom hadrònic és un àtom al qual un o més dels electrons orbitals se substitueixen per hadrons.[3] Els hadrons possibles inclouen mesons com els pions o kaons, conduint a un àtom mesònic; antiprotons, produint un àtom antiprotònic; i partícula Σ, conduirà a l'àtom sigmaòtic o Σ.[4][5][6]

A diferència dels leptons, els hadrons poden interaccionar via força forta, per això els nivells d'energia dels àtoms hadrònics estan influenciats per les forces nuclears entre el nucli i l'hadró. Com que la força forta és una interacció de curt abast, els efectes són més forts si l'orbital atòmic implicat és proper al nucli quan els nivells d'energia implicats poden ampliar-se o desaparèixer a causa de l'absorció de l'hadró pel nucli.[2][5] Els àtoms hadrònics, com l'hidrogen piònic i l'hidrogen kaònic, són protagonistes d'interessant proves experimentals de la teoria de la interacció forta, cromodinàmica quàntica.[7]

Oni[modifica | modifica el codi]

L'oni és l'estat que uneix una partícula i la seva antiparticula. El clàssic oni és el positroni, que consistieix d'un electró i un positró units en un estat metaestable de llarga durada. El positroni s'estudia des dels anys 50 per entendre la teoria quàntica de camps.

El Pioni, un estat que uneix dos pions de càrrega oposada, és interessant per a l'exploració de la interacció forta. Això seria també cert per al protoni Els veritables anàlegs del positroni en la teoria d'interaccions fortes, això no obstant, no són àtoms exòtics sinó mesons, els estats quarkònics, els quals estan fet de un quark pesant com el quark encantat o el quark fons i el seu antiquark. Els quarks cim són tan pesants que es desintegren mitjançant força feble abans de formar estats lligats. L'exploració d'aquests estats mitjançant la cromodinàmica quàntica no relativista i el reticle QCD són tests cada cop més importants dela cromodinàmica quàntica.

El Muoni, a pesar del seu nom, no és un oni que conté un muó i un antimuó, ja que la IUPAC assignà aquest nom al sistema de antimuó unit amb un electró. Això no obstant, s'ha teoritzat la producció de muoni real, el qual seria un oni.[8]

Entendre els estats d'unió d'hadrons com el pioni i el protoni és també important per clarificar nocions relaciondes els hadrons exòtics com les molècules mesòniques i estats pentaquarks.

Àtoms hipernuclears[modifica | modifica el codi]

Els àtoms poden estar constituïts per electrons que orbiten un hipernucli, el qual pot contenir partícules estranyes, denominades hiperons. Aquests àtoms hipernucleares s'estudien principalment per observar la seva evolució nuclear, més en els dominis de la física nuclear que en els de la física atòmica.

Àtoms de quasipartícules[modifica | modifica el codi]

En sistemes de matèria condensada, tal com en alguns semiconductors, hi ha estats anomenats excitons, en els quals un electró s'uneix a un forat d'electró.

Referències[modifica | modifica el codi]

  1. §1.8, Constituents of Matter: Atoms, Molecules, Nuclei and Particles, Ludwig Bergmann, Clemens Schaefer, and Wilhelm Raith, Berlin: Walter de Gruyter, 1997, ISBN 3-11-013990-1.
  2. 2,0 2,1 Exotic atoms, AccessScience, McGraw-Hill. Accessed on line September 26, 2007.
  3. p. 3, Fundamentals in Hadronic Atom Theory, A. Deloff, River Edge, New Jersey: World Scientific, 2003. ISBN 981-238-371-9.(anglès)
  4. p. 8, §16.4, §16.5, Deloff.
  5. 5,0 5,1 The strange world of the exotic atom, Roger Barrett, Daphne Jackson and Habatwa Mweene, New Scientist, August 4, 1990. Accessed on line September 26, 2007.(anglès)
  6. p. 180, Quantum Mechanics, B. K. Agarwal and Hari Prakash, New Delhi: Prentice-Hall of India Private Ltd., 1997. ISBN 81-203-1007-1.(anglès)
  7. Exotic atoms cast light on fundamental questions, CERN Courier, November 1, 2006. Accessed on line September 26, 2007.(anglès)
  8. «Enllaç». DOE/SLAC National Accelerator Laboratory (2009, June 4). Theorists Reveal Path To True Muonium -- Never-seen Atom. ScienceDaily. Retrieved June 7, 2009.(anglès)