Teoria dels jocs

De Viquipèdia
Dreceres ràpides: navegació, cerca

La teoria de jocs és una branca de la matemàtica aplicada que estudia les situacions estratègiques en què els jugadors escullen diferents accions en un intent per maximitzar els guanys o retorns. També pot definir-se com un estudi de les situacions de cooperació i conflicte entre dos o més jugadors i de quines accions depèn la resolució del problema. És un camp d'estudi relativament jove. Primer es va desenvolupar com una eina per entendre el comportament econòmic, però avui dia s'ha aplicat al comportament animal i al desenvolupament de les espècies per la selecció natural. Alguns exemples de la teoria de jocs, com ara el dilema del presoner, en què la decisió racional d'interès propi afecta negativament a tots els participants, s'utilitzen en les ciències polítiques, l'ètica i la filosofia. Recentment ha rebut l'atenció dels científics informàtics, atès que pot aplicar-se als camps de la intel·ligència artificial i de la cibernètica.

Encara que és similar a la teoria de les decisions, la teoria de jocs estudia les decisions que es realitzen en un ambient on diversos jugadors interaccionen. És a dir, estudia les eleccions de comportament òptim en les quals els costos i els beneficis de cada opció no són fixos, sinó que depenen de les eleccions dels individus.

Història de la teoria de jocs[modifica | modifica el codi]

La primera discussió de la teoria de jocs de la que hi ha registre, és una carta de James Waldegrave el 1713. En aquesta carta, Waldergrave dóna una solució d'estratègia mixta a una versió d'un joc de cartes anomenat le Her. No va ser fins al 1838, amb la publicació de les Recerques dels Principis Matemàtics de la Teoria de la Riquesa d'Antoine Augustine Cournot que es va esmentar una anàlisi genèrica del que seria la teoria de jocs. En la seva obra, Cournot considera un duopoli i presenta una solució que avui dia es considera una versió restringida de l'equilibri de Nash. L'anàlisi de Cournot fou més genèrica que no pas la de Waldegrave.

Encara que el matemàtic francès Émile Borel va realitzar recerques en aquest camp, la teoria de jocs pròpiament dita no va existir com a estudi fins a la publicació el 1928 de diverses anàlisis per John von Neumann, considerat el seu inventor. Von Neumann fou un matemàtic brillant. La seva obra va tenir un gran impacte en la teoria dels conjunts i va ser clau per desenvolupar les bombes àtomiques i d'hidrogen, així com els ordinadors. L'obra de von Neumann va culminar amb el seu llibre La Teoria dels Jocs i del Comportament Econòmic el 1944, del qual va ser co-autor Oskar Morgenstein. Aquesta obra conté el mètode per trobar les solucions òptimes per als jocs de dos jugadors de suma zero. Durant aquest període, els estudis sobre la teoria dels jocs van estar enfocats en la teoria dels jocs cooperatius, que analitza les estratègies òptimes pels grups d'individus, sota la suposició que poden aplicar-se acords entre ells.

El 1950 va aparèixer la primera discussió sobre el dilema del presoner i la corporació RAND va realitzar-ne un experiment. Alhora, John Nash va elaborar la primera definició d'estratègia "òptima" per als jocs de molts jugadors. Aquesta estratègia es coneix ara com "equilibri de Nash". Aquest equilibri és general i s'utilitza en els jocs cooperatius i en els no cooperatius. Durant la dècada dels cinquanta, La teoria dels jocs va incrementar la seva activitat: sorgiren nous conceptes i es van aplicar a la filosofia, a la ciència política i a l'economia.

El 1965 Reinhard Selten va introduir el seu concepte de solució d'un equilibri perfecte d'un sub-joc, que redefinia el concepte de l'equilibri de Nash. El 1967 John Harsanyi va desenvolupar els conceptes d'informació completa i els jocs de Bayes. El 1994, Harsanyi va guanyar el premi Nobel d'Economia amb John Nash i Reihnard Selten.

Durant la dècada de 1970 la teoria dels jocs es va aplicar a la biologia com a resultat de la investigació de John Maynard Smith i la seva estratègia evolucionaria. A més, s'hi van introduir els conceptes de l'equilibri correlacionat i del coneixement comú. El 2005 Thomas Schelling i Robert Aumann van rebre el Premi Nobel pels seus treballs en models dinàmics i pel desenvolupament del concepte d'equilibri.

Referències[modifica | modifica el codi]

  • Robert Aumann, "Acceptable points in general cooperative n-person games", in R. D. Luce and A. W. Tucker (eds.), Contributions to the Theory 23 of Games IV, Annals of Mathematics Study 40, 287–324, Princeton University Press, Princeton NJ.
  • Axelrod, R. (1984). The Evolution of Cooperation. ISBN 0-465-02121-2
  • Bicchieri, Cristina (1993). Rationality and Coordination. Cambridge University Press
  • Kenneth Binmore, Fun and Games.
  • David M. Chess (1988). Simulating the evolution of behavior: the iterated prisoners' dilemma problem. Complex Systems, 2:663–670.
  • Dresher, M. (1961). The Mathematics of Games of Strategy: Theory and Applications Prentice-Hall, Englewood Cliffs, NJ.
  • Flood, M.M. (1952). Some experimental games. Research memorandum RM-789. RAND Corporation, Santa Monica, CA.
  • Kaminski, Marek M. (2004) Games Prisoners Play Princeton University Press. ISBN 0-691-11721-7 http://webfiles.uci.edu/mkaminsk/www/book.html
  • Poundstone, W. (1992) Prisoner's Dilemma Doubleday, NY NY.
  • Greif, A. (2006). Institutions and the Path to the Modern Economy: Lessons from Medieval Trade. Cambridge University Press, Cambridge, UK.
  • Rapoport, Anatol and Albert M. Chammah (1965). Prisoner's Dilemma. University of Michigan Press.
  • S. Le and R. Boyd (2007) "Evolutionary Dynamics of the Continuous Iterated Prisoner's Dilemma" Journal of Theoretical Biology, Volume 245, 258–267. Full text
  • A. Rogers, R. K. Dash, S. D. Ramchurn, P. Vytelingum and N. R. Jennings (2007) "Coordinating team players within a noisy iterated Prisoner's Dilemma tournament" Theoretical Computer Science 377 (1-3) 243-259. [1]

Lectures sobre el tema[modifica | modifica el codi]

Enllaços externs[modifica | modifica el codi]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Teoria dels jocs Modifica l'enllaç a Wikidata