Grigori Iakovlevitx Perelman

De Viquipèdia
Dreceres ràpides: navegació, cerca
Grigori Perelman
Grigori Perelman el 1993
Grigori Perelman el 1993
Naixement Grigori Iakovlevitx Perelman 13 de juny de 1966 (1966-06-13) (48 anys)
Leningrad, Unió Soviètica
Residència Sant Petersburg, Rússia
Ciutadania Rússia
Nacionalitat rus
Camp Matemàtiques
Universitat Universitat Estatal de Sant Petersburg
Assessorament acadèmic   Aleksandr Aleksandrov
Yuri Burago
Treball(s) Geometria riemanniana
topologia geomètrica
Demostració de la Conjectura de Poincaré
Premis importants Premi de la Societat matemàtica de Sant Petersburg (1991), acceptat
Premi EMS (1996), rebutjat
Medalla Fields (2006), rebutjat
Premi dels problemes del mil·lenni (2010), rebutjat


Grigori Iakovlevitx Perelman (en rus Григорий Яковлевич Перельман) és un matemàtic rus nascut el 13 de juny de 1966 a Sant Petersburg. El seu treball sobre el flux de Ricci, el va conduir a demostrar el 2003 la conjectura de Poincaré, un dels problemes fonamentals de les matemàtiques contemporànies des de 1904, mitjançant la revisió del programa de Hamilton. Fita que li van donar reputació internacional i nombroses distincions que ell ha rebutjat sistemàticament.

Investigador de l'Institut de matemàtiques Steklov de Sant Petersburg, la personalitat esquerpa de Perelman ha contribuït a alimentar els debats sobre els seus decisius treballs, que va presentar en una sèrie de conferències als Estats Units d'Amèrica l'any 2003.

El seu resultat sobre la conjectura de Poincaré va ser reconegut oficialment per la comunitat matemàtica que va proposar atorgar-li la medalla Fields el 22 d'agost de 2006 al congrés internacional de matemàtiques per "les seves contribucions a la geometria i les seves idees revolucionàries en l'estructura analítica i geomètrica del flux de Ricci". Però Perelman la va refusar[1][2] malgrat que és considerada la més alta distinció per a un matemàtic. Va qualificar aquest premi de «mancat d'interès».

Joventut i formació[modifica | modifica el codi]

Nascut en una família d'origen jueu,[3] Grigori Perelman estudià a l'Escola secundària n° 239 de Leningrad, centre reconegut internacionalment per la seva selectivitat extrema i el seu ambiciós programa d'aprenentatge de matemàtiques i de física teòrica. Va ser distingit el 1982, encara estudiant a l'Institut, la medalla d'or amb una puntuació perfecta a les Olimpíades de matemàtiques (42 punts de 42 possibles). Va obtenir el doctorat (anomenat Candidat de Ciència a l'URSS) a finals dels 80, a la Facultat de Matemàtiques i Mecànica de la Universitat de Leningrad, una de les universitats més reputades de l'antiga Unió Soviètica. Les seves recerques se centraren en les superfícies en sella en espais euclidians. També cultivà la seva afició a tocar el violí, amb un nivell destacable, i jugar al ping-pong.

Després de rebre el seu diploma, Perelman treballà a l'Institut de Matemàtiques de Steklov, amb Aleksandr Danilovich Aleksandrov i Yuri Dmitrievich Burago, i més tard col·laboraria amb diverses universitats de la Unió Soviètica abans de tornar a l'Institut Steklov.

A final dels anys 80, treballà a l'Institut Courant de la Universitat de Nova York, i més tard a la Universitat de Berkeley. A començaments del 90 retornà a Sant Petersburg i pràcticament desaparegué del món acadèmic, deixant de publicar cap més treball durant prop de 10 anys.

Fins al 2002, Perelman era conegut per les seves aportacions en teoremes de comparació en geometria riemanniana. Entre els seus notables assoliments destaca la demostració de la conjectura de Soul.

El 2002 publicà a Internet un breu article de 39 pàgines. Un procediment inusual, ja que no seguia la revisió "per iguals" pròpia de les publicacions científiques. Així posava sobre la taula els fonaments de la demostració de la conjectura de Poincaré que va completar publicant dos articles més per la mateixa via. Abandonà després el seu silenci en impartir nombroses conferències sobre el tema.

El problema[modifica | modifica el codi]

La conjectura de Poincaré, proposada pel matemàtic francès Henri Poincaré el 1904, era el problema sense resoldre més famós de la topologia. De manera resumida, la conjectura indica que si una varietat topològica tridimensional tancada és simplement connexa (és a dir, cada llaç en la varietat es pot deformar en un punt), aleshores la varietat és homeomorfa a l'esfera tridimensional. S'havia demostrat que el resultat anàleg és cert en dimensions majors; però el cas de varietats tridimensionals resultava ser el més difícil de tots, ja que quan "es manipula" topològicament una varietat tridimensional hi ha massa poques dimensiones per a moure "regions problemàtiques".

La demostració de Perelman[modifica | modifica el codi]

Perelman modificà el programa de Richard Hamilton per a la demostració de la conjectura, en el qual la idea central era la noció del flux de Ricci. Es tractava, segons Hamilton de formular un "procés dinàmic" en el que una varietat tridimensional donada es transformi geomètricament de manera que aquest procés de distorsió sigui governat per una equació diferencial anàloga a l'equació de la calor. Equació que descriu el comportament de quantitats escalars com la temperatura; afirma que les concentracions de temperatura elevada es dispersen fins que s'arriba a una temperatura uniforme al llarg de l'objecte. Similarment, el fluc de Ricci descriu el comportament d'una quantitat tensorial, el tensor de curvatura de Ricci. La idea de Hamilton és que amb el flux de Ricci, les concentracions de gran curvatura es dispersaran fins que s'assoleixi una curvatura uniforme sobre tota la varietat tridimensional. Si és així, si es comença amb qualsevol varietat tridimensional i es permet flux de Ricci, eventualment s'obtindria en principi una "forma normal". D'acord amb William Thurston, aquesta forma normal ha de ser una d'un petit nombre de possibilitats, cada una amb un diferent sabor de geometria, anomenades geometries de models de Thurston.

És similar a formular un procés dinàmic que gradualment "pertorbi" una matriu quadrada determinada, i que resultaria després d'un temps finit en la seva forma racional canònica. La idea de Hamilton havia despertat gran interès però no s'havia aconseguit demostrar que el procés no s'encallaria desenvolupant "singularitats", fins que els càlculs de Perelman esbossaren un programa per a superar aquests obstacles. Segons Perelman, una modificació del flux de Ricci estàndard, el "flux de Ricci amb cirurgia", pot eliminar sistemàticament regions singulars a mesura que es desenvolupen, de manera controlada. Se sap que las singularitats han de donar-se en molts casos. Tanmateix, els matemàtics esperen que, assumint que la conjectura de geometrització sigui certa, qualsevol singularitat que es desenvolupi en un temps finit s'estaria essencialment "comprimint" al llarg de certes esferes que corresponen a la descomposició en primers de la 3-varietat. Si això es compleix, qualssevol singularitats de "temps infinit" han de resultar de determinades pecas col·lapsants de la descomposició JSJ. El treball de Perelman demostra en principi aquesta afirmació i per tant la conjectura de geometrització.

Distincions i reconeixements[modifica | modifica el codi]

El 22 d'agost de 2006, Perelman havia de rebre la medalla Fields, en el Congrés internacional de matemàtiques.[4]

Però Perelman no va ni assistir a la cerimònia i va rebutjar la medalla. El 1990, ja havia refusat el prestigiós premi de la Societat europea de matemàtiques. Segons algunes fonts, com el seu company Alexandre Grothendieck, Perelman ara viu en una difícil situació econòmica a casa la seva mare a Sant Petersburg i es comunica només de tant en tant amb alguns col·legues per correu electrònic

El 18 de març del 2010 el Clay Mathematics Institute va anunciar la concessió del primer dels premis del mil·lenni a Grigori Perelman per la resolució de la conjectura de Poincaré.

Vegeu també[modifica | modifica el codi]

Referències[modifica | modifica el codi]

Enllaços externs[modifica | modifica el codi]