Desigualtat matemàtica: diferència entre les revisions

De la Viquipèdia, l'enciclopèdia lliure
Contingut suprimit Contingut afegit
Cap resum de modificació
Línia 31: Línia 31:
=== Aplicació d'una funció en tots dos costats ===
=== Aplicació d'una funció en tots dos costats ===
== Definicions formals i generalitzacions ==
== Definicions formals i generalitzacions ==
Un '''ordre parcial''' (no estricte) és una relació binària ≤ [[Relació reflexiva|reflexiva]], [[Relació antisimètrica|antisimètrica]], i [[Relació transitiva|transitiva]] sobre un [[conjunt]] ''P''.<ref>{{cite book|title=Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics|author1=Simovici, Dan A.|author2=Djeraba, Chabane|publisher=Springer|year=2008|isbn=9781848002012|chapter=Partially Ordered Sets|chapter-url=https://books.google.com/books?id=6i-F3ZNcub4C&pg=PA127|name-list-style=amp}}</ref> És a dir, per tot ''a'', ''b'', i ''c'' en ''P'', s'han de satisfer les següents condicions:

# ''a'' ≤ ''a'' ([[Relació reflexiva|reflexivitat]])
# si ''a'' ≤ ''b'' i ''b'' ≤ ''a'', llavors ''a'' = ''b'' ([[Relació antisimètrica|antisimetria]])
# si ''a'' ≤ ''b'' i ''b'' ≤ ''c'', llavors ''a'' ≤ ''c'' ([[Relació transitiva|transitivitat]])

S'anomena conjunt parcialment ordenat al conjunt amb un ordre parcial.<ref>{{Cite web|url=http://mathworld.wolfram.com/PartiallyOrderedSet.html|title=Partially Ordered Set|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-03}}</ref> Aquests són els axiomes més bàsics que tot tipus d'ordre ha de satisfer. Altres axiomes que existeixen per a altres definicions d'ordres en un conjunt ''P'' són, per exemple:

# Per tot ''a'' i ''b'' en ''P'', ''a'' ≤ ''b'' o ''b'' ≤ ''a'' ([[ordre total]]).
# Per tot ''a'' i ''b'' en ''P'' pel qual ''a'' < ''b'', existeix ''c'' en ''P'' tal que ''a'' < ''c'' < ''b'' ([[ordre dens]]).
# Tot [[conjunt]] no buit de ''P'' amb una [[fita superior]] té una fita superior ''mínima'' (supremum) en ''P'' ([[propietat de fita superior mínima]]).

=== Cossos ordenats ===
=== Cossos ordenats ===
Sigui (''F'', +, ×) un [[Cos (matemàtiques)|cos]] i ≤ un [[ordre total]] en ''F'', llavors s'anomena '''[[cos ordenat]]''' a (''F'', +, ×, ≤) [[si i només si]]:
Sigui (''F'', +, ×) un [[Cos (matemàtiques)|cos]] i ≤ un [[ordre total]] en ''F'', llavors s'anomena '''[[cos ordenat]]''' a (''F'', +, ×, ≤) [[si i només si]]:
Línia 38: Línia 50:
Tant (<math>\mathbb{Q}</math>, +, ×, ≤) com (<math>\mathbb{R}</math>, +, ×, ≤) són cossos ordenats, però ≤ no pot ser definit per fer que (<math>\mathbb{C}</math>, +, ×, ≤) sigui un cos ordenat,<ref>{{Cite web|url=http://www.math.ubc.ca/~feldman/m320/fields.pdf|title=Fields|last=Feldman|first=Joel|date=2014|website=math.ubc.ca|access-date=2019-12-03}}</ref> ja que −1 és l'arrel quadrada de ''i'' i seria per tant positiu.
Tant (<math>\mathbb{Q}</math>, +, ×, ≤) com (<math>\mathbb{R}</math>, +, ×, ≤) són cossos ordenats, però ≤ no pot ser definit per fer que (<math>\mathbb{C}</math>, +, ×, ≤) sigui un cos ordenat,<ref>{{Cite web|url=http://www.math.ubc.ca/~feldman/m320/fields.pdf|title=Fields|last=Feldman|first=Joel|date=2014|website=math.ubc.ca|access-date=2019-12-03}}</ref> ja que −1 és l'arrel quadrada de ''i'' i seria per tant positiu.


A part de ser un cos ordenat, <math>\mathbb{R}</math> té també la propietat de cota superior mínima. De fet, <math>\mathbb{R}</math> pot ser definit com l'únic cos ordenat amb aquesta característica.<ref>{{cite book |last1=Stewart |first1=Ian |title=Why Beauty Is Truth: The History of Symmetry |date=2007 |publisher=Hachette UK |isbn=0-4650-0875-5 |page=106 |url=https://books.google.com/books?id=1ek3DgAAQBAJ&pg=PT106}}</ref>
A part de ser un cos ordenat, <math>\mathbb{R}</math> té també la propietat de fita superior mínima. De fet, <math>\mathbb{R}</math> pot ser definit com l'únic cos ordenat amb aquesta característica.<ref>{{cite book |last1=Stewart |first1=Ian |title=Why Beauty Is Truth: The History of Symmetry |date=2007 |publisher=Hachette UK |isbn=0-4650-0875-5 |page=106 |url=https://books.google.com/books?id=1ek3DgAAQBAJ&pg=PT106}}</ref>


== Notació en cadena ==
== Notació en cadena ==

Revisió del 19:05, 23 gen 2021

En programació lineal, la solució candidata és definida mitjançant un conjunt de desigualtats matemàtiques.

En matemàtiques, una desigualtat é suna relació que fa una comparació de no igualtat entre dos nombre o dues expressions matemàtiques.[1][2] Normalment s'utilitza per comparar la magnitud de dos nombre en la recta numèrica. Hi ha diverses notacions diferents per representar diferents tipus de desigualtats:

  • La notació a < b significa que a és menor que b.
  • La notació a > b significa que a és major que b.

En tots dos casos, a no és igual a b. Aquestes relacions reben el nom de desigualtats estrictes,[2] que significa que a és estricament menor que o major que b. S'exclou l'equivalència.

A part de les desigualtats estrictes, existeixen dos tipus més de desigualtat, que són les no estrictes:

  • La notació ab o ab significa que a és menor que o igual a b (o, el que és el mateix, a tot estirar a és b, o a no és major que b).
  • La notació ab o ab signfica que a és major que o igual a b (o, el que és el mateix, pel cap baix a és b, o a no és menor que b).

La relació "no és major que" també pot ser representada per ab, el símbol per "major que" esmenat amb una barra, "no". El mateix aplica per la relació "no és menor que" i ab.

La notació ab significa que a no és igual a b, i de vegades és considerat una forma de desigualtat estricta.[3] No diu que un dels dos termes sigui major que l'altre; ni tan sols requereix que a i b formin part de cap tipus de conjunt ordenat.

En ciències de l'enginyeria, s'utilitza menys formalment la següent notació per afirmar que una quantitat és "molt més gran" que l'altra, normalment diverses ordres de magnitud. Això implica que el valor menor pot ser negligit sense que això afecti significativament en la precisió d'una aproximació

  • La notació ab significa que a és molt menor que b. (en teoria de la mesura, tanmateix, aquesta notació s'utilitza per a la continuïtat absoluta, un concepte que no hi té res a veure.)[4]
  • La notació ab significa que a és molt major que b.[5]

Propietats

Invers

Transitivitat

Suma i resta

Multiplicació i divisió

Element oposat

Invers multiplicatiu

Valor absoult

Aplicació d'una funció en tots dos costats

Definicions formals i generalitzacions

Un ordre parcial (no estricte) és una relació binària ≤ reflexiva, antisimètrica, i transitiva sobre un conjunt P.[6] És a dir, per tot a, b, i c en P, s'han de satisfer les següents condicions:

  1. aa (reflexivitat)
  2. si ab i ba, llavors a = b (antisimetria)
  3. si ab i bc, llavors ac (transitivitat)

S'anomena conjunt parcialment ordenat al conjunt amb un ordre parcial.[7] Aquests són els axiomes més bàsics que tot tipus d'ordre ha de satisfer. Altres axiomes que existeixen per a altres definicions d'ordres en un conjunt P són, per exemple:

  1. Per tot a i b en P, ab o ba (ordre total).
  2. Per tot a i b en P pel qual a < b, existeix c en P tal que a < c < b (ordre dens).
  3. Tot conjunt no buit de P amb una fita superior té una fita superior mínima (supremum) en P (propietat de fita superior mínima).

Cossos ordenats

Sigui (F, +, ×) un cos i ≤ un ordre total en F, llavors s'anomena cos ordenat a (F, +, ×, ≤) si i només si:

  • ab implica que a + cb + c;
  • 0 ≤ a i 0 ≤ b implica que 0 ≤ a × b.

Tant (, +, ×, ≤) com (, +, ×, ≤) són cossos ordenats, però ≤ no pot ser definit per fer que (, +, ×, ≤) sigui un cos ordenat,[8] ja que −1 és l'arrel quadrada de i i seria per tant positiu.

A part de ser un cos ordenat, té també la propietat de fita superior mínima. De fet, pot ser definit com l'únic cos ordenat amb aquesta característica.[9]

Notació en cadena

La notació a < b < c significa que "a < b i b < c" i per tant, a través de la propietat de transitivitat, a < c. Mitjançant les lleis de més amunt, es pot sumar o restar el mateix nombre a tots tres termes, o multiplar o dividir tots tres termes pel mateix nombre diferent a zero i revertir totes les desigualtats en cas que el nombre sigui negatiu. Per tant, per exemple, a < b + e < c és equivalent a ae < b < ce.

Es pot generalitzar aquesta notació a qualsevol nombre de termes. Per exemple, a1a2 ≤ ... ≤ an significa que aiai+1 per i = 1, 2, ..., n − 1. Per transitivitat, aquesta condició és equivalent a aiaj per tot 1 ≤ ijn.

En la resolució de desigualtats definides amb notació en cadena, és possible i de vegades necessari avaluar els termes independentment. Per exemple, per resoldre la desigualtat 4x < 2x + 1 ≤ 3x + 2, és possible aïllar x en qualsevol part de la desigualtat a través de la sum i la resta. En canvi, les desigualtat s'han de resoldre de forma independent, resultant en x < 1/2 i x ≥ −1 respectivament, que es pot combinar en la solució final −1 ≤ x < 1/2.

De vegades, s'utilitza la notació en cadena amb desigualtats en sentits contraris. Això significa la conjunció lògica de les desigualtat entre termes adjacents. Per exemple, la condició que defineix tanques s'escriu a1 < a2 > a3 < a4 > a5 < a6 > ... . La notació en cadena barrejada s'utilitza sobretot en relacions compatibles, com <, =, ≤. Per exemple, a < b = cd significa que a < b, b = c, i cd. Aquesta notació existeix en alguns llenguatges de programació com ara Python. En canvi, en llenguatges de programació que proporcionen un ordre dels tipus de resultats de comparació, com ara C, fins i tot les cadenes homogènies poden tenir un significat completament diferent.[10]

Desigualtat entre mitjanes

Hi ha moltes desigualtats entre mitjanes. Per exemple, donats a1, a2, …, an nombres positius qualssevol, es té que HGAQ, on

(mitjana harmònica),
(mitjana geomètrica),
(mitjana aritmètica),
(mitjana quadràtica).

Desigualtat de Cauchy-Schwarz

La desigualtat de Cauchy-Schwarz afirma que, donats dos vectors u i v que partanyen a un espai prehilbertià (un espai vectorial proveït d'un cert producte escalar), es compleix que

on és el producte vectorial de l'espai. Exemples de producte vectorial inclouen el producte escalar real i complex. En l'espai euclidià amb el producte escalar estàndard, la desigualtat de Cauchy–Schwarz inequality és

Desigultats de potències

Una "desigualtat de potències" és una desigualtat que conté termes de la forma ab, on a i b són nombres reals positius o expressions variables. Sovint apareixen en exercicis de les ol·limpíades matemàtiques.

Exemples

  • Per qualsevol x real,
  • Si x > 0 i p > 0, llavors
En el límit en què p → 0, les cotes superior i inferior convergeixen a ln(x).
  • Si x > 0, llavors
  • Si x > 0, llavors
  • Si x, y, z > 0, llavors
  • Per dos nombres diferents a i b qualssevol,
  • Si x, y > 0 i 0 < p < 1, llavors
  • Si x, y, z > 0, llavors
  • Si a, b > 0, llavors[11]
  • Si a, b > 0, llavors[12]
  • Si a, b, c > 0, llavors
  • Si a, b > 0, llavors

Desigualtats notables

Els matemàtics sovint utilitzen les desigualtats per establir fites de quantitats que no poden ser determinades amb fórmules exactes. Algunes d'elles són utilitzades tan sovint que tenen nom:

Desigualtats en nombres complexos

El conjunt dels nombres complexos amb les seves operacions de suma i multiplicació és un cos, però és impossible definir una relació ≤ tal que sigui un cos ordenat. Per fer que sigui un cos ordenat, s'haurien de satisfer les següents propietats:

  • si , llavors ;
  • si i , llavors .

Com que ≤ és un ordre total, per qualsevol nombre a, o bé , o bé (en tal cas, la primera propietat implica que ). En qualsevol dels casos, ; això significa que i2 > 0 i que 12 > 0; per tant i , la qual cosa vol dir que (−1 + 1) > 0; una contradicció.

Tanmateix, es pot definir una operació ≤ tal que satisfaci només la primera propietat (és a dir, que "si , llavors ). De vegades, es fa servir la definició de l'ordre lexicogràfic:

  • , si
    • Re(a) < Re(b), o
    • Re(a) = Re(b) i Im(a) ≤ Im(b)

Es pot demostrar fàcilment que, per aquesta definició, implica .

Desigualtats vectorials

Es poden definir també relacions de desigualtat similars a les de dalt per vectors columna. Siguin els vectors (és a dir, i , on i són nombres reals per ), es poden definir les següents relacions:

  • , si per .
  • , si per .
  • , si per i .
  • , si per .

De forma similar, es poden definir relacions per , , i . Aquesta notació és consistent amb l'utilitzada per Matthias Ehrgott a Multicriteria Optimization (vegeu Bibliografia).

La propietat de tricotomia (tal i com s'enuncia més amunt) no és vàlida en les relacions vectorials. Per exemple, quan i , existeix una relació de desigualtat no vàlida entre aquests dos vectors. També, s'hauria de definir un invers multiplicatiu en els vectors abans que de considerar aquesta propietat. Tanmateix, per a la resta de propietats mencionades, existeix una propietat paral·lela per a desigualtats vectorials.

Sistemes d'inequacions

Els sistemes de desigualtats lineals es poden simplifcar mitjançant l'eliminació de Fourier-Motzkin.[13]

La descomposició algebraica cilíndrica és un algorisme que permet avaluar si un sistema d'equacions i desigualtats polinòmiques té solucions i, en cas de tenir-ne, descriure-les. La complexitat d'aquest algorisme és doblement exponencial en el nombre de variables. El disseny d'algorismes que siguin més eficients en casos específics és un àmbit de recerca en actiu.

Vegeu també

Referències

  1. «The Definitive Glossary of Higher Mathematical Jargon — Inequality» (en anglès americà), 01-08-2019.
  2. 2,0 2,1 «Inequality Definition (Illustrated Mathematics Dictionary)».
  3. «Inequality».
  4. «Absolutely continuous measures - Encyclopedia of Mathematics».
  5. Weisstein, Eric W. «Much Greater» (en anglès).
  6. Simovici, Dan A.. «Partially Ordered Sets». A: Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics. Springer, 2008. ISBN 9781848002012. 
  7. Weisstein, Eric W. «Partially Ordered Set» (en anglès). mathworld.wolfram.com. [Consulta: 3 desembre 2019].
  8. Feldman, Joel. «Fields». math.ubc.ca, 2014. [Consulta: 3 desembre 2019].
  9. Stewart, Ian. Why Beauty Is Truth: The History of Symmetry. Hachette UK, 2007, p. 106. ISBN 0-4650-0875-5. 
  10. Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. 2nd. Englewood Cliffs/NJ: Prentice Hall, Apr 1988 (Prentice Hall Software Series). ISBN 0131103628.  Here: Sect.A.7.9 Relational Operators, p.167: Quote: "a<b<c is parsed as (a<b)<c"
  11. Laub, M.; Ilani, Ishai «E3116». The American Mathematical Monthly, 97, 1, 1990, pàg. 65–67. DOI: 10.2307/2324012. JSTOR: 2324012.
  12. Manyama, S. «Solution of One Conjecture on Inequalities with Power-Exponential Functions». Australian Journal of Mathematical Analysis and Applications, 7, 2, 2010, pàg. 1.
  13. Plantilla:Cite Gartner Matousek 2006

Bibliografia

Enllaços externs

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Desigualtat matemàtica