Funció característica (teoria de la probabilitat): diferència entre les revisions

De la Viquipèdia, l'enciclopèdia lliure
Contingut suprimit Contingut afegit
Afegit el cas multidimensional
Línia 344: Línia 344:


'''Remarca''': se sap que la convergència en distribució cap a una constant equival a la [[Convergència de variables aleatòries|convergència en probabilitat]] cap a la mateixa constant.
'''Remarca''': se sap que la convergència en distribució cap a una constant equival a la [[Convergència de variables aleatòries|convergència en probabilitat]] cap a la mateixa constant.

== Cas multidimensional ==

Sigui <math>\boldsymbol X =(X_1,\dots, X_d)</math> un vector aleatori de dimensió <math>d</math>, és a dir, una aplicació <math>\boldsymbol X =(X_1,\dots, X_d):\Omega\to \mathbb R^d</math> tal que cada component <math>X_j,\ j=1,\dots, d</math> és una variable aleatòria. La seva funció característica és l'aplicació <math>\varphi_{\boldsymbol X}: \mathbb R^d\to \mathbb C </math> definida per <math display="block">\varphi_{\boldsymbol X}(t_1,\dots, t_d)=E[e^{i(t_1X_1+\cdots +t_d X_d)}],\quad (t_1,\dots, t_d)\in \mathbb R^d.</math>Amb notació vectorial, si designem per <math display="inline"><\boldsymbol s,\boldsymbol t>=\sum_{j=1}^d s_jt_j</math> el producte escalar ordinari de dos vectors <math>\boldsymbol s=(s_1,\dots, s_d)\ \text{i}\ \boldsymbol t=(t_1,\dots, t_d)</math>, <math display="block">\varphi_{\boldsymbol X}(\boldsymbol t)=E[e^{i\, <\boldsymbol t,\boldsymbol X>}],\quad
\boldsymbol t \in \mathbb R^d.</math>Quan no hi hagi confusió, escriurem <math>\varphi</math> en lloc de <math>\varphi_{\boldsymbol X}</math>.

=== Càlcul de la funció característica===
====Cas discret====
Sigui <math>\boldsymbol X =(X_1,\dots, X_d)</math> un vector aleatori discret amb funció de probabilitat <math>p_{\boldsymbol X}(x_1,\dots, x_d)</math>. Aleshores la seva funció característica és<math display="block">\varphi_{\boldsymbol X}(t_1,\dots, t_d)=\sum_{x_1,\dots, x_d}e^{i(t_1x_1+\cdots +t_d x_d)}\, p_{\boldsymbol X}(x_1,\dots, x_d)
,\quad (t_1,\dots, t_d)\in \mathbb R^d.</math>
====Cas absolutament continu====
Si <math>\boldsymbol X =(X_1,\dots, X_d)</math> és un vector aleatori amb funció de densitat <math>f_{\boldsymbol X}(x_1,\dots, x_d)</math>. Aleshores la seva funció característica és
<math display="block">\varphi_{\boldsymbol X}(t_1,\dots, t_d)=\int_{-\infty}^\infty\cdots \int_{-\infty}^\infty e^{i(t_1x_1+\cdots +t_d x_d)}\, f_{\boldsymbol X}(x_1,\dots, x_d)\, dx_1\cdots dx_d
,\quad (t_1,\dots, t_d)\in \mathbb R^d.</math>

=== Propietats ===
Les propietats de les funcions característiques unidimensionals es trasllades al cas vectorial. Les següents propietats es troben a Sato {{sfn|Sato|1999}}; per a les demostracions completes vegeu Cuppens {{sfn|Cuppens|1975}}.

* <math>\varphi(\boldsymbol 0)=1</math>, on <math>\boldsymbol 0=(0,\dots, 0)</math> .
* <math>\vert \varphi(\boldsymbol t) \vert \le 1,\quad \forall\boldsymbol t\in \mathbb R^d</math> .
* la funció <math>\varphi</math> és uniformement contínua.
* La funció <math>\varphi</math> és hermítica: <math display="block">\varphi(-\boldsymbol t)=\overline{\varphi(\boldsymbol t)}.</math>
* Per aquesta propietat és convenient escriure tots els vectors en columna, tal com és habitual en [[Àlgebra lineal|Algebra lineal]]. Designarem per <math>\boldsymbol U'</math> la [[matriu transposada|transposada]] d'una matriu (o vector) <math>\boldsymbol U</math>. Sigui <math> \boldsymbol X=(X_1,\dots, X_d)'</math> un vector aleatori, <math>\boldsymbol b=(b_1,\dots,b_k)'</math> un vector d'escalars i <math>\boldsymbol A</math> una matriu <math>k\times d</math>. Definim<math display="block">\boldsymbol Y=\boldsymbol{A \, X}+\boldsymbol b.</math>Aleshores, <math display="block">\varphi_{\boldsymbol Y}(\boldsymbol t)=e^{i\, <\boldsymbol t,\boldsymbol b>}\,
\varphi_{\boldsymbol X}(\boldsymbol{A' t})=e^{i\, \boldsymbol t'\boldsymbol b}\,
\varphi_{\boldsymbol X}(\boldsymbol{A' t})
, \quad \boldsymbol t=(t_1,\dots, t_k)'\in \mathbb R^k.</math>
* '''Teorema d'inversió.''' Necessitem algunes notacions: Recordem que un conjunt <math>B\in \mathcal B(\mathbb R^d)</math> , on <math>\mathcal B(\mathbb R^d)</math> és la [[Σ-àlgebra de Borel|<math>\sigma</math>-àlgebra de Borel]] sobre <math>\mathbb R^d</math>, es diu que és un conjunt de continuïtat de (la distribució de) <math> \boldsymbol X</math> si <math>P(X\in \partial B)=0</math>, on <math>\partial B</math> és la frontera de <math>B</math>. Donats dos vectors, <math>\boldsymbol a=(a_1,\dots,a_d) \ \text{i} \ \boldsymbol b=(b_1,\dots, b_d)</math> escriurem <math>\boldsymbol a<\boldsymbol b</math> (respectivament <math>\boldsymbol a\le \boldsymbol b</math>) si <math>a_j<b_j, \ j=1,\dots, d</math> (respectivament <math>a_j\le b_j, \ j=1,\dots, d</math>). Si <math>\boldsymbol a\le \boldsymbol b</math> designarem per <math>(\boldsymbol a,\boldsymbol b)</math> el conjunt <math>(\boldsymbol a, \boldsymbol b)=\{\boldsymbol x\in \mathbb R^d: \ \boldsymbol a<\boldsymbol x<
\boldsymbol b\}</math> ; de manera anàloga es defineix <math>[\boldsymbol a,\boldsymbol b]</math>. Si <math>(\boldsymbol a,\boldsymbol b)</math> és un conjunt de continuïtat de <math> \boldsymbol X</math>, aleshores
<math display="block">P\big(X\in (\boldsymbol a,\boldsymbol b)\big)=\frac{1}{(2\pi)^d}\lim_{\tau_1\to \infty}
\cdots \lim_{\tau_d\to \infty}\int_{-\tau_1}^{\tau_1}\cdots \int_{-\tau_d}^{\tau_d}\prod_{j=1}^d
\frac{e^{-it_ja_j}-e^{it_j b_j}}{it_j}\, \varphi(t_1,\dots,t_d)\, dt_1\cdots dt_d.</math>
* '''Teorema d'unicitat.''' si <math> \boldsymbol X</math> i <math> \boldsymbol Y</math> són dos vectors aleatoris, amb funcions característiques <math>\varphi_{\boldsymbol X}</math> i <math>\varphi_{\boldsymbol Y}</math> respectivament, tals que<math display="block">\varphi_{\boldsymbol X}(\boldsymbol t)=\varphi_{\boldsymbol Y}(\boldsymbol t),\quad \forall \boldsymbol t\in
\mathbb R^d,</math>aleshores <math> \boldsymbol X</math> i <math> \boldsymbol Y</math> tenen la mateixa [[Distribució de probabilitat|distribució]].
* '''Funció característica i independència.''' Els vectors aleatoris <math>d</math>-dimensionals <math> \boldsymbol X_1,\dots, \boldsymbol X_k</math> són independents si i només si <math display="block"> \varphi_{(\boldsymbol X_1,\dots, \boldsymbol X_k)}(\boldsymbol t_1,\dots, \boldsymbol t_k)=
\varphi_{\boldsymbol X_1}(\boldsymbol t_1)\cdots \varphi_{\boldsymbol X_k}(\boldsymbol t_k),\quad
\forall \boldsymbol t_1,\dots, \boldsymbol t_k\in \mathbb R^{d}.</math>
* '''Funció característica i suma de vectors aleatoris independents.''' Siguin <math> \boldsymbol X_1,\dots, \boldsymbol X_k</math> vectors aleatoris <math>d</math>-dimensionals independents i posem<math display="block"> \boldsymbol Y=\boldsymbol X_1+\cdots+\boldsymbol X_k.</math>Aleshores <math display="block"> \varphi_{\boldsymbol Y}(\boldsymbol t)=
\varphi_{\boldsymbol X_1}(\boldsymbol t)\cdots \varphi_{\boldsymbol X_k}(\boldsymbol t),\quad
\forall \boldsymbol t\in \mathbb R^{d}.</math>
* '''Funció característica i moments.''' Recordem que es diu que un vector aleatori <math> \boldsymbol X=(X_1,\dots, X_d)</math> té moment d'ordre <math>(n_1,\dots, n_d)</math>, on <math>n_1\ge 0, \dots, n_d\ge 0</math>, si <math>E\big[\big \vert X_1^{n_1}\cdots X_d^{n_d}\big \vert \big]<\infty</math>, i, en aquest cas, es defineix el moment d'ordre <math>(n_1,\dots, n_d)</math> per
<math display="block"> m_{n_1,\dots, n_d}=E\big[X_1^{n_1}\cdots X_d^{n_d}\big].</math> Si el vector aleatori <math> \boldsymbol X=(X_1,\dots, X_d)</math> compleix que <math> E\big[\Vert \boldsymbol X\Vert ^m\big]<\infty</math>, on <math display="inline"> \Vert \boldsymbol x\Vert=\sqrt{\sum_{j=1}^d x_j^2}</math> és la norma d'un vector <math> \boldsymbol x</math>, aleshores la funció característica <math>\varphi</math> és de classe <math> \mathcal C^m</math> i per a qualsevol <math> n_1,\dots, n_d\ge 0</math> , amb <math>\sum_{j=1}^d n_j\le m</math> ,<math display="block"> E(X_1^{n_1}\cdots X_k^{n_d})=\frac{1}{i^{n_1+\cdots +n_d}}\,
\frac{\partial^{n_1+\cdots + n_d}}{\partial t_1^{n_1}\cdots \partial t_k^{n_d} }
\,\varphi(t_1\dots, t_d)
\Big\vert_{t_1=0,\dots, t_d=0}.</math>Recíprocament, si la funció característica <math>\varphi</math> és de classe <math>\mathcal C^m</math>per a <math>m</math> parell , aleshores el vector <math> \boldsymbol X</math> té moments d'ordre <math>(n_1,\dots, n_d)</math> per qualsevol <math> n_1,\dots, n_d\ge 0</math>, amb <math>\sum_{j=1}^d n_j\le m</math>.
* '''Funció característica i convergència en distribució.''' Sigui <math> (\boldsymbol X_n)_{n\in \mathbb N}</math> una successió de vectors aleatoris <math> d</math>-dimensionals. Designem per <math> \varphi_{\boldsymbol X_n}</math> la funció característica del vector <math> \boldsymbol X_n</math> . Aleshores la successió convergeix en distribució a un vector aleatori <math> \boldsymbol X</math> si i només si <math display="block"> \forall \boldsymbol t\in \mathbb R^d , \ \varphi_{\boldsymbol X_n}
(\boldsymbol t)\to
\phi(\boldsymbol t) , \ \text{quan} \ n\to \infty,</math>on <math> \phi:\mathbb R^d \to \mathbb C
</math> és una funció contínua en <math> \boldsymbol 0</math>. En aquest cas, <math> \phi</math> és la funció característica de <math> \boldsymbol X</math>


===Exemples===

====Distribució multinomial====
{{Article principal|Distribució multinomial}}

Considerem un experiment que pot tenir <math> d</math> resultats diferents, que designarem per <math> R_1,\dots, R_d</math> , amb probabilitats <math> p_1,\dots, p_d\in (0,1)</math>, <math> p_1+\cdots+p_d=1</math>. Fem <math> n</math> repeticions independents i denotem per <math> X_1</math> el nombre de vegades que obtenim el resultat <math> R_1</math>, per <math> X_2</math> el nombre de vegades que obtenim el resultat <math> R_2</math>, i així successivament. Aleshores la probabilitat d'obtenir <math> x_1</math> vegades el resultat <math> R_1</math>, <math> x_2</math> vegades el resultat <math> R_2</math>, etc. amb <math> x_1+\cdots+x_n=n</math> és<math display="block"> p_{(X_1,\dots, X_d)}(x_1,\dots, x_d)=P(X_1=x_1,\dots, X_d=x_d)=\frac{n!}{x_1!\cdots x_d!}\, p_1^{x_1}\cdots p_d^{x_d}.</math>

Es diu que el vector <math>\boldsymbol X=(X_1,\dots, X_d)</math> segueix una [[distribució multinomial]]<ref>{{Ref-llibre|url=https://www.worldcat.org/oclc/34894415|títol=Discrete Multivariate Distributions|editorial=Wiley|data=1997|lloc=Nova York|isbn=0-471-12844-1|nom1=N. L.|cognom1=Johnson|nom2=S.|cognom2=Kotz|nom3=N.|cognom3=Balakrihsnan}}</ref> <ref>{{Ref-llibre|edició=4th ed.|títol=Statistical distributions.|url=https://www.worldcat.org/oclc/695549649|editorial=Wiley-Blackwell|data=2010|lloc=Oxford|isbn=978-0-470-62724-2|cognom=Forbes|nom=C.|pàgines=pp.135-136|cognom2=Evans|nom2=M.|cognom3=Hastings|nom3=N.|cognom4=Peacock|nom4=B.}}</ref> de paràmetres <math> n, p_1,\dots, p_d</math>, i s'escriu <math>\boldsymbol X\sim\mathcal M(n;p_1,\dots, p_d)</math> . Cal notar que cada component <math>X_j</math> té una [[distribució binomial]] de paràmetres <math>n</math> i <math>p_j</math>, <math>X_j\sim B(n,p_j)</math>. De fet, una distribució multinomial és una extensió de la distribució binomial quan hi ha més de dos resultats possibles. La funció característica del vector <math>\boldsymbol X=(X_1,\dots, X_d)</math> és
<math display="block">\varphi(t_1,\dots, t_d)=\big(p_1e^{it_1}+\cdots +p_de^{it_d}\big)^n , \ t_1,\dots, t_d \in \mathbb R.</math>
{{Caixa desplegable|títol=Càcul de la funció característica|contingut=Per a <math>t_1,\dots, t_d</math>, <math display="block"> \begin{align}
\varphi(t_1,\dots, t_d)&=E(e^{i\sum_{j=1}^d t_jX_j})=
\sum_{x_1,\dots, x_d\in \{0,\dots, n \}, \atop\sum_{j=1}^d x_j=n}\frac{n!}{x_1!\cdots x_d!}\,
e^{i\sum_{j=1}^d t_jx_j}p_1^{x_1}\cdots p_d^{x_d}\\
&=\sum_{x_1,\dots, x_d\in \{0,\dots, n \}, \atop\sum_{j=1}^d x_j=n}\frac{n!}{x_1!\cdots x_d!}\,
\big(p_1e^{it_1}\big)^{x_1}\cdots \big(p_de^{it_d})^{x_d}=\big(p_1e^{it_1}+\dots+p_d e^{it_d}\big)^n,
\end{align}</math>on a l'última igualtat hem aplicat la [[Teorema multinomial|fórmula]]
<math display="block">(a_1+a_2+\cdots+a_d)^n=\sum\binom{n}{x_1,\dots,x_d}a_1^{x_1}\cdots a_d^{x_d},</math>on la suma es fa sobre totes les <math>d</math>-[[N-pla|ples]] <math> (x_1,\dots, x_d)\in \mathbb \{0,1,\dots, n\}^d</math> tals que <math> x_1+\cdots+x_d=n</math>.}}



A partir d'aquesta funció característica podem calcular de manera senzilla <math> E[X_1X_2]</math>:
<math display="block"> \frac{\partial^2}{\partial t_1\partial t_2}\varphi(t_1,\dots, t_d)=
-n(n-1)(p_1e^{it_1}+\cdots +p_d e^{it_d})^{n-2}p_1 p_2 e^{it_1}e^{it_2},</math>d'on <math display="block"> E(X_1X_2)=n(n-1)p_1p_2.</math>
====Distribució normal multivariant====
Vegeu Anderson <ref>{{Ref-llibre|edició=3rd ed|títol=An introduction to multivariate statistical analysis|url=https://www.worldcat.org/oclc/50731392|editorial=Wiley-Interscience|data=2003|lloc=Hoboken, N.J.|isbn=0-471-36091-0|nom=T. W.|cognom=Anderson}}</ref>. En aquest exemple escriurem tots els vectors en columna. Un vector aleatori <math>\boldsymbol X=(X_1,\dots, X_d)'</math> es diu que segueix una distribució normal <math> d</math>-dimensional <math>
\mathcal N(\boldsymbol 0, \boldsymbol I_d)</math> on <math>
\boldsymbol I_d</math> és la matriu identitat, si té funció de densitat<math display="block"> f(x_1,\dots, x_d)=\frac{1}{(2\pi)^{d/2}} \, e^{-(x_1^2+\cdots +x^2_d)/2}.</math> Cal notar que les components del vector són independents, cadascuna amb una [[Distribució normal|distribució normal]] estàndard <math> \mathcal N(0,1)</math>. La seva funció característica és
<math display="block">\varphi_{\boldsymbol X}(t_1,\dots, t_d)=e^{-(t_1^2+\cdots +t_d^2)/2}=
e^{-\boldsymbol t'\boldsymbol t/2}, \ \boldsymbol t= (t_1,\dots, t_d)^\prime
\in \mathbb R^d.</math>


{{Caixa desplegable|títol=Càcul de la funció característica|contingut=
<math display="block">\begin{align}
\varphi_{\boldsymbol X} (t_1,\dots, t_d)& = \int_{-\infty}^\infty \cdots
\int_{-\infty}^\infty e^{i(t_1 x_1+\cdots +t_d x_d)}\,
f_{\boldsymbol X} (x_1,\dots, x_d) \, dx_1 \cdots dx_d\\
&=\frac{1}{(2\pi)^{d/2}}\int_{-\infty}^\infty \cdots
\int_{-\infty}^\infty e^{i(t_1 x_1+\cdots +t_d x_d)}\,
e^{-(x_1^2+\cdots+_d^2)/2} \, dx_1 \cdots dx_d\\
& =\frac{1}{(2\pi)^{d/2}} \int_{-\infty}^\infty e^{it_1x_1-x_1^2/2}\, dt_1\cdots \int_{-\infty}^\infty e^{it_d x_d- x_d^2/2}\, dt_d
\\ &=e^{-(t_1^2+\cdots +t_d^2)/2},
\end{align} </math>on hem utilitzar la funció característica de la distribució <math> \mathcal N(0,1)</math> que hem calculat abans.}}


Sigui <math>\boldsymbol \Sigma</math> una matriu <math>d\times d</math> definida positiva <ref>Per definició, una matriu definida positiva és simètrica</ref> i <math>\boldsymbol \mu=(\mu_1,\dots, \mu_d)^\prime</math>un vector d'escalars. La matriu <math>\boldsymbol \Sigma</math> té una matriu arrel quadrada <ref>{{Ref-llibre|títol=A matrix handbook for statisticians|url=https://www.worldcat.org/oclc/191879555|editorial=Wiley-Interscience|data=2008|lloc=Hoboken, N.J.|isbn=978-0-470-22678-0|nom=G. A. F.|cognom=Seber|pàgines=220}}</ref> <math>\Sigma^{1/2}</math> definida positiva ( i per tant simètrica), que compleix<math>\big(\boldsymbol \Sigma^{1/2}\big)^2=\boldsymbol \Sigma</math> . Definim <math display="block">\boldsymbol Y=\boldsymbol\Sigma^{1/2}\boldsymbol X+\boldsymbol \mu.</math>Per la fórmula que hem vist abans, la funció característica de <math>\boldsymbol Y</math> serà, per <math>\boldsymbol t=(t_1,\dots, t_d)'\in \mathbb R^d</math>, <math display="block">\varphi_{\boldsymbol Y}(\boldsymbol t)=e^{i\, \boldsymbol t'\boldsymbol \mu}\,
\varphi_{\boldsymbol X}(\boldsymbol{\Sigma^{1/2} t})=e^{i\, \boldsymbol t'\boldsymbol \mu}\,
e^{-(\Sigma^{1/2}\boldsymbol t)'\Sigma^{1/2}\boldsymbol t/2}=e^{i\, \boldsymbol t'\boldsymbol \mu
-\boldsymbol t' \Sigma \boldsymbol t/2}.</math>D'altra banda, atès que <math>\text{E}(\boldsymbol X)=\big(\text{E}(X_1),\dots,\text{E}(X_d)\big)'=\boldsymbol 0,</math>d'on<math display="block">\text{E}(\boldsymbol Y)=\big(\text{E}(Y_1),\dots,\text{E}(Y_d)\big)'=(\mu_1,\dots, \mu_d)'=\boldsymbol \mu.</math>I per les propietats de la matriu de variàncies-covariàncies, la matriu de variàncies-covariàncies del vector <math>\boldsymbol Y</math> serà: <math display="block">\boldsymbol V(\boldsymbol Y)=\boldsymbol\Sigma^{1/2}\, \boldsymbol V(\boldsymbol Y)\,
\boldsymbol\Sigma^{1/2}=\boldsymbol\Sigma.</math>S'escriu <math>\boldsymbol Y \sim \mathcal N(\boldsymbol \mu, \boldsymbol \Sigma)</math> . Utilitzant la fórmula del canvi de variables per a vectors aleatoris amb densitat, podem calcular la funció de densitat de <math>\boldsymbol Y</math> , que és: <math display="block">f_{\boldsymbol Y}(x_1,\dots,x_d)=\frac{1}{(2\pi)^{d/2}\sqrt{\text{det}\,\boldsymbol \Sigma}}\,
e^{-(\boldsymbol x-\boldsymbol \mu)' \boldsymbol \Sigma^{-1}(\boldsymbol x-\boldsymbol \mu)/2 },</math>on <math>\text{det}\,\boldsymbol \Sigma</math> és el determinant de la matriu <math>\boldsymbol \Sigma</math>.

En el cas que hem vist fins ara, la matriu de variàncies-covariàncies del vector normal multidimensional <math>\boldsymbol Y</math> era no singular, és a dir, <math>\text{det}\,\boldsymbol \Sigma>0</math>. Utilitzant la funció característica es pot definir un vector normal multidimensional de manera que inclogui el cas que la matriu de variàncies covariàncies sigui singular i que s'anomena '''vector normal multidimensional singular''' o '''degenerat''' <ref>{{Ref-llibre|títol=The normal distribution : characterizations with applications|url=https://www.worldcat.org/oclc/32236224|editorial=Springer-Verlag|data=1995|lloc=New York|isbn=0-387-97990-5|nom=Wlodzimierz|cognom=Bryc}}</ref> <ref>Per altres definicions alternatives, vegeu {{Ref-llibre|títol=A matrix handbook for statisticians|url=https://www.worldcat.org/oclc/191879555|editorial=Wiley-Interscience|data=2008|lloc=Hoboken, N.J.|isbn=978-0-470-22678-0|nom=G. A. F.|cognom=Seber|pàgines=436}}</ref>; aquest vector està concentrat en una varietat lineal (estricte) de <math>\mathbb R^d</math> i no té funció de densitat. Específicament, sigui <math>\boldsymbol \Sigma</math> una matriu <math>d\times d</math> definida no negativa i <math>\boldsymbol \mu=(\mu_1,\dots, \mu_d)^\prime</math>un vector d'escalars; un vector aleatori <math>\boldsymbol Y=(Y_1,\dots, Y_d)'</math> , es diu que és normal multidimensional, i s'escriu <math>\boldsymbol Y \sim \mathcal N(\boldsymbol \mu, \boldsymbol \Sigma)</math> si té funció característica <math display="block">\varphi_{\boldsymbol Y}(\boldsymbol t)=e^{i\, \boldsymbol t'\boldsymbol \mu
-\boldsymbol t' \Sigma \boldsymbol t/2}.</math>Quan <math>\text{det}\,\boldsymbol \Sigma=0</math> es diu que és un vector '''normal''' '''multidimensional singular'''; en aquest cas, també el vector d'esperances és <math>\boldsymbol \mu</math> i la matriu de variàncies és <math>\boldsymbol \Sigma</math> , però si el rang de <math>\boldsymbol \Sigma</math> és <math>r</math>, aleshores la distribució de <math>\boldsymbol Y</math> està concentrada en una varietat lineal de dimensió <math>r</math> i per tant no té funció de densitat.

==Referències==
<references />


== Bibliografia ==
== Bibliografia ==
* {{Ref-llibre|títol=Decomposition of multivariate probabilities|url=https://www.worldcat.org/oclc/1094828|editorial=Academic Press|data=1975|lloc=New York|isbn=0-12-199450-3|nom=Roger|cognom=Cuppens}}
* {{en}} Lukacs (Eugen) — ''Characteristic Functions.'' Griffin, London, 1960 (primera edició); 1970 (segona edició revisada i ampliada).
* [[William Feller|Feller, William]], ''Introducción a la teoría de las probabilidades y sus aplicaciones'' (vol. 2), Mèxico : Edit. Limusa, 1978.
* {{de}} {{fr}} Rényi (Alfred) — ''Wahrscheinlichkeitsrechnung, mit einem Anhang über Informations-theorie.'' — V. E. B. Deutscher Verlag der Wissenschaften, Berlin, 1962. Traducció al francès: ''Calcul des probabilités avec un appendice sur la théorie de l'information.'' Dunod, Paris, 1966.
* Lukacs, Eugen, ''Characteristic Functions''. London: Griffin, , 1960 (primera edició); 1970 (segona edició revisada i ampliada).
* {{en}} [[William Feller|Feller (William)]] — ''An Introduction to Probability Theory and Its Applications.'' (vol. 2) — John Wiley & Sons, New York, 1971.
* Rényi, Alfred, '' Wahrscheinlichkeitsrechnung, mit einem Anhang über Informations-theorie''. V. E. B. Deutscher Verlag der Wissenschaften, Berlin, 1962. Traducció al francès: ''Calcul des probabilités avec un appendice sur la théorie de l'information.'' Paris: Dunod, 1966.
* {{Ref-llibre|títol=Lévy processes and infinitely divisible distributions|url=https://www.worldcat.org/oclc/41142930|editorial=Cambridge University Press|data=1999|lloc=Cambridge, U.K.|isbn=0-521-55302-4|nom=Ken-iti|cognom=Sato|nom2=|cognom2=|pàgines=9}}




== Vegeu també ==
== Vegeu també ==
* [[Convergència en distribució]]
* [[Convergència de variables aleatòries|Convergència en distribució]]
* [[Convolució]]
* [[Convolució]]
* [[Funció generatriu dels moments]]
* [[Funció generatriu dels moments]]

Revisió del 20:24, 14 març 2022

En teoria de la probabilitat, la funció característica d'una variable aleatòria real és una eina matemàtica que proporciona informació completa sobre la distribució de probabilitat de la variable aleatòria i sovint en facilita l'estudi. A més, amb les funcions característiques es disposa, gràcies al teorema de continuïtat de Lévy, d'un mètode senzill i potent per estudiar la convergència en distribució d'una successió de variables aleatòries.

Donada una variable aleatòria real definida sobre un espai de probabilitat , la seva funció característica és la funció (és a dir de valors complexos) definida, per a tot real t, per la relació següent (on , i denota l'operador esperança):

Expressions de la funció característica

Expressions integrals generals

Per definició de  :

Denotant per la distribució de probabilitat de la variable aleatòria X:

(segons el teorema de la mesura imatge)

Remarques:

  • la definició (1) té sentit perquè per a tot real t, la variable aleatòria complexa
és fitada (té mòdul 1) i per tant és integrable respecte a la mesura de probabilitat  ;
  • l'equació (2) significa que la funció característica d'una variable aleatòria real X és la transformada de Fourier de la seva distribució de probabilitat , mesura de probabilitat sobre l'espai mesurable (o probabilitzable) , on és la sigma-àlgebra de Borel de

Casos particulars importants

  • Quan X és discreta, amb valors tals que per a tot k, aleshores:
(suma finita o sèrie absolutament convergent)
(integral de Lebesgue; en els casos usuals coincideix amb la integral de Riemann)

Propietats elementals

La funció característica d'una variable aleatòria real X:

  • compleix la relació:
  • és hermítica:
(on és el conjugat del nombre complex z)
  • compleix la identitat:
i en particular : ;
per tant si i tenen la mateixa distribució (dita simètrica), la funció és parella amb valors reals

(la tercera propietat es dedueix del teorema de convergència dominada; les altres són immediates)

Exemples clàssics

Distribució degenerada

Si la variable aleatòria X segueix la distribució degenerada de valor (és a dir: ; X és constant quasi segurament) aleshores:

Distribució binomial

Si la variable aleatòria X segueix la distribució binomial (on ) aleshores:

d'on es dedueix (fórmula del binomi de Newton):

Distribució de Bernoulli

En particular, si la variable aleatòria X segueix la distribució de Bernoulli (on ) aleshores:

Distribució geomètrica

Si la variable aleatòria X segueix la distribució geomètrica (on ) aleshores:

Distribució de Poisson

Si la variable aleatòria X segueix la distribució de Poisson (on ) aleshores:

Distribució uniforme contínua

Si la variable aleatòria X segueix la distribució uniforme contínua (on i a < b) aleshores:

si , i .

En particular, si X segueix la distribució (on ) aleshores:

si , i .

Distribució exponencial

Si la variable aleatòria X segueix la distribució exponencial (on ) aleshores:

Distribució normal estàndard

Si la variable aleatòria X segueix la distribució normal estàndard aleshores:

Distribució de Cauchy simètrica

Si la variable aleatòria X segueix la distribució de Cauchy simètrica (on ) aleshores:

Per demostrar-ho, es pot utilitzar el teorema dels residus (anàlisi complexa).

Aplicacions

Cas de la distribució normal general

Sigui una variable aleatòria X amb distribució normal (on ). Aleshores:

.

Cas de la distribució de Cauchy general

Sigui una variable aleatòria X amb distribució de Cauchy (on ). Aleshores:

.

Perquè la funció característica és anomenada així

Com el seu nom ho indica, la funció característica d'una variable aleatòria (real) en caracteritza la distribució de probabilitat: dues variables aleatòries segueixen la mateixa distribució si i només si tenen la mateixa funció característica: és el teorema d'unicitat (vegeu infra).

Per aquesta raó, la funció característica d'una variable aleatòria X també és anomenada funció característica de la distribució d'X. Per exemple, es pot parlar de la funció característica de la distribució normal.

Teorema d'inversió

Donada una variable aleatòria real X, es denota per la seva funció de distribució. Per a tot parell de punts de continuïtat de es compleix la relació següent:

Això és una variant probabilista del teorema d'inversió de la transformació de Fourier.

Teorema d'unicitat

El teorema d'inversió permet reconstruir (almenys en teoria) la funció de distribució d'una variable aleatòria a partir de la seva funció característica. Una conseqüència és l'important teorema d'unicitat:

Dues variables aleatòries reals són idènticament distribuïdes si i només si tenen la mateixa funció característica.

Utilització pràctica

El més sovint, el teorema d'unicitat s'utilitza de la manera següent per determinar la distribució de probabilitat d'una variable aleatòria real X: es calcula la funció característica i es reconeix la funció característica d'una distribució clàssica que és, per tant, la distribució d'X (per exemple, vegeu infra la prova de l'estabilitat d'algunes distribucions de probabilitat).

Funció característica de la suma de variables aleatòries independents

Suma de dues variables aleatòries independents

Donades dues variables aleatòries reals independents X i Y (definides sobre el mateix espai de probabilitat), es compleix la relació següent:

.

En efecte,

.

Atès que X i Y són independents, també ho són, per a tot real t, les variables aleatòries i ; per tant:

.

Remarca: el recíproc és fals. Existeixen variables aleatòries no independents les funcions característiques de les quals compleixen aquesta relació. Heus aquí un exemple ben conegut: donada una variable aleatòria X amb distribució de Cauchy simètrica  :

Però és clar que X i X no són independents.

Generalització

Donades n variables aleatòries reals independents (definides sobre el mateix espai de probabilitat), es compleix la relació següent:

(per consegüent, el producte de funcions característiques també és una funció característica).

Se sap que la transformada de Fourier d'un producte de convolució és el producte ordinari de les transformades de Fourier.

Tenint en compte el teorema d'unicitat, la relació precedent s'interpreta així: si les variables aleatòries són independents, aleshores:

 : la distribució de probabilitat de la suma és el producte de convolució de les distribucions dels termes.

Per determinar la distribució de la suma, els dos punts de vista (producte de convolució de les distribucions de probabilitat, producte ordinari de les funcions característiques) són matemàticament equivalents. Tanmateix, el mètode de les funcions característiques és generalment més simple d'utilitzar.

Aplicació: estabilitat d'algunes distribucions de probabilitat

Siguin n variables aleatòries reals independents .

  • si per a tot k, segueix la distribució binomial , aleshores segueix la distribució binomial
  • si per a tot k, segueix la distribució de Poisson , aleshores segueix la distribució de Poisson
  • si per a tot k, segueix la distribució normal , aleshores segueix la distribució normal
  • si per a tot k, segueix la distribució de Cauchy , aleshores segueix la distribució de Cauchy


Funció característica i moments

Sigui una variable aleatòria real X.

Teorema directe

Si el moment d'ordre m d'X existeix (finit), aleshores:

  • la funció característica és de classe en
  • , i per tant:
  • , on .

Recíproc (parcial)

Si és m vegades derivable en el punt 0, aleshores:

  • per a tot natural k tal que el moment d'ordre k d'X existeix i:

En particular, si és infinitament derivable en el punt 0, aleshores tots els moments d'X existeixen.

Exemple

Si la variable aleatòria X segueix la distribució de Poisson , la seva funció característica és infinitament derivable en  : tots els moments d'X existeixen. Es comprova fàcilment que:

.

Per tant:

, , i

(també es poden calcular directament com a sumes de sèries convergents).

Teorema de continuïtat de Lévy

Aquest teorema permet estudiar la convergència en distribució de les successions de variables aleatòries per mitjà de la convergència puntual de les seves funcions característiques.

Enunciat

Una successió de variables aleatòries reals convergeix en distribució cap a una variable aleatòria real X si i només si:

quan , on
és una funció contínua en el punt 0.

En aquest cas, és la funció característica d'X.

Versió més simple

Una successió de variables aleatòries reals convergeix en distribució cap a una variable aleatòria real X si i només si:

quan .

La segona versió exigeix que sigui coneguda per endavant la distribució límit.

Utilitzacions

Heus aquí unes quantes aplicacions clàssiques del teorema de continuïtat de Lévy.

Teorema del límit central

Una aplicació clàssica del teorema de continuïtat de Lévy és la prova del teorema del límit central.

Teorema de convergència de Poisson

Una segona aplicació clàssica és la prova del teorema de convergència de Poisson:

Sigui una successió real tal que (on ) i per a tot n, .
Si per a tot n, la variable aleatòria segueix la distribució binomial , aleshores la successió convergeix en distribució cap a una variable aleatòria X amb distribució .

Llei feble dels grans nombres

Una tercera aplicació clàssica és la prova de la llei feble dels grans nombres per a variables aleatòries integrables (és a dir amb esperança finita) i independents. S'enuncia així:

Donada una successió de variables aleatòries reals (definides sobre el mateix espai de probabilitat) independents i idènticament distribuïdes (abreujadament i.i.d), amb esperança finita, es posa: .
Si es defineix per a tot n:
, on ,
aleshores la successió convergeix en distribució cap a la constant .

Remarca: se sap que la convergència en distribució cap a una constant equival a la convergència en probabilitat cap a la mateixa constant.

Cas multidimensional

Sigui un vector aleatori de dimensió , és a dir, una aplicació tal que cada component és una variable aleatòria. La seva funció característica és l'aplicació definida per

Amb notació vectorial, si designem per el producte escalar ordinari de dos vectors ,
Quan no hi hagi confusió, escriurem en lloc de .

Càlcul de la funció característica

Cas discret

Sigui un vector aleatori discret amb funció de probabilitat . Aleshores la seva funció característica és

Cas absolutament continu

Si és un vector aleatori amb funció de densitat . Aleshores la seva funció característica és

Propietats

Les propietats de les funcions característiques unidimensionals es trasllades al cas vectorial. Les següents propietats es troben a Sato [1]; per a les demostracions completes vegeu Cuppens [2].

  • , on .
  • .
  • la funció és uniformement contínua.
  • La funció és hermítica:
  • Per aquesta propietat és convenient escriure tots els vectors en columna, tal com és habitual en Algebra lineal. Designarem per la transposada d'una matriu (o vector) . Sigui un vector aleatori, un vector d'escalars i una matriu . Definim
    Aleshores,
  • Teorema d'inversió. Necessitem algunes notacions: Recordem que un conjunt , on és la -àlgebra de Borel sobre , es diu que és un conjunt de continuïtat de (la distribució de) si , on és la frontera de . Donats dos vectors, escriurem (respectivament ) si (respectivament ). Si designarem per el conjunt  ; de manera anàloga es defineix . Si és un conjunt de continuïtat de , aleshores

  • Teorema d'unicitat. si i són dos vectors aleatoris, amb funcions característiques i respectivament, tals que
    aleshores i tenen la mateixa distribució.
  • Funció característica i independència. Els vectors aleatoris -dimensionals són independents si i només si
  • Funció característica i suma de vectors aleatoris independents. Siguin vectors aleatoris -dimensionals independents i posem
    Aleshores
  • Funció característica i moments. Recordem que es diu que un vector aleatori té moment d'ordre , on , si , i, en aquest cas, es defineix el moment d'ordre per

Si el vector aleatori compleix que , on és la norma d'un vector , aleshores la funció característica és de classe i per a qualsevol , amb ,
Recíprocament, si la funció característica és de classe per a parell , aleshores el vector té moments d'ordre per qualsevol , amb .

  • Funció característica i convergència en distribució. Sigui una successió de vectors aleatoris -dimensionals. Designem per la funció característica del vector . Aleshores la successió convergeix en distribució a un vector aleatori si i només si
    on és una funció contínua en . En aquest cas, és la funció característica de


Exemples

Distribució multinomial

Considerem un experiment que pot tenir resultats diferents, que designarem per , amb probabilitats , . Fem repeticions independents i denotem per el nombre de vegades que obtenim el resultat , per el nombre de vegades que obtenim el resultat , i així successivament. Aleshores la probabilitat d'obtenir vegades el resultat , vegades el resultat , etc. amb és

Es diu que el vector segueix una distribució multinomial[3] [4] de paràmetres , i s'escriu . Cal notar que cada component té una distribució binomial de paràmetres i , . De fet, una distribució multinomial és una extensió de la distribució binomial quan hi ha més de dos resultats possibles. La funció característica del vector és


A partir d'aquesta funció característica podem calcular de manera senzilla :

d'on

Distribució normal multivariant

Vegeu Anderson [5]. En aquest exemple escriurem tots els vectors en columna. Un vector aleatori es diu que segueix una distribució normal -dimensional on és la matriu identitat, si té funció de densitat

Cal notar que les components del vector són independents, cadascuna amb una distribució normal estàndard . La seva funció característica és



Sigui una matriu definida positiva [6] i un vector d'escalars. La matriu té una matriu arrel quadrada [7] definida positiva ( i per tant simètrica), que compleix . Definim

Per la fórmula que hem vist abans, la funció característica de serà, per ,
D'altra banda, atès que d'on
I per les propietats de la matriu de variàncies-covariàncies, la matriu de variàncies-covariàncies del vector serà:
S'escriu . Utilitzant la fórmula del canvi de variables per a vectors aleatoris amb densitat, podem calcular la funció de densitat de , que és:
on és el determinant de la matriu .

En el cas que hem vist fins ara, la matriu de variàncies-covariàncies del vector normal multidimensional era no singular, és a dir, . Utilitzant la funció característica es pot definir un vector normal multidimensional de manera que inclogui el cas que la matriu de variàncies covariàncies sigui singular i que s'anomena vector normal multidimensional singular o degenerat [8] [9]; aquest vector està concentrat en una varietat lineal (estricte) de i no té funció de densitat. Específicament, sigui una matriu definida no negativa i un vector d'escalars; un vector aleatori , es diu que és normal multidimensional, i s'escriu si té funció característica

Quan es diu que és un vector normal multidimensional singular; en aquest cas, també el vector d'esperances és i la matriu de variàncies és , però si el rang de és , aleshores la distribució de està concentrada en una varietat lineal de dimensió i per tant no té funció de densitat.

Referències

  1. Sato, 1999.
  2. Cuppens, 1975.
  3. Johnson, N. L.; Kotz, S.; Balakrihsnan, N. Discrete Multivariate Distributions. Nova York: Wiley, 1997. ISBN 0-471-12844-1. 
  4. Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical distributions.. 4th ed.. Oxford: Wiley-Blackwell, 2010, pp.135-136. ISBN 978-0-470-62724-2. 
  5. Anderson, T. W.. An introduction to multivariate statistical analysis. 3rd ed. Hoboken, N.J.: Wiley-Interscience, 2003. ISBN 0-471-36091-0. 
  6. Per definició, una matriu definida positiva és simètrica
  7. Seber, G. A. F.. A matrix handbook for statisticians. Hoboken, N.J.: Wiley-Interscience, 2008, p. 220. ISBN 978-0-470-22678-0. 
  8. Bryc, Wlodzimierz. The normal distribution : characterizations with applications. New York: Springer-Verlag, 1995. ISBN 0-387-97990-5. 
  9. Per altres definicions alternatives, vegeu Seber, G. A. F.. A matrix handbook for statisticians. Hoboken, N.J.: Wiley-Interscience, 2008, p. 436. ISBN 978-0-470-22678-0. 

Bibliografia

  • Cuppens, Roger. Decomposition of multivariate probabilities. New York: Academic Press, 1975. ISBN 0-12-199450-3. 
  • Feller, William, Introducción a la teoría de las probabilidades y sus aplicaciones (vol. 2), Mèxico : Edit. Limusa, 1978.
  • Lukacs, Eugen, Characteristic Functions. London: Griffin, , 1960 (primera edició); 1970 (segona edició revisada i ampliada).
  • Rényi, Alfred, Wahrscheinlichkeitsrechnung, mit einem Anhang über Informations-theorie. V. E. B. Deutscher Verlag der Wissenschaften, Berlin, 1962. Traducció al francès: Calcul des probabilités avec un appendice sur la théorie de l'information. Paris: Dunod, 1966.
  • Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge, U.K.: Cambridge University Press, 1999, p. 9. ISBN 0-521-55302-4. 


Vegeu també