Àcid glutàmic

De Viquipèdia
Dreceres ràpides: navegació, cerca
Àcid Glutàmic
Àcid glutàmic
Nomenclatura IUPAC Àcid 2-aminopentanedioic
Identificadors
Nombre CAS 617-65-2
56-86-0 (L-isomer)
6893-26-1 (D-isomer)
Nombre EC 210-522-2
PubChem 611
ChemSpiderID 591
Simbolització N[C@@H](CCC(O)=O)C(O)=O
InChl 1/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H,7,8)(H,9,10)
Propietats
Fórmula molecular C5H9NO4
Massa molar 147.13 g/mol
Aspecte Sòlid cristal·lí de color blanc
Densitat 1.4601 (20 °C)
Punt de fusió 199 °C descomp.
Solubilitat en H2O Soluble
Informació addicional Altres

L'àcid glutàmic (abreviat com a Glu o E) és un dels vint aminoàcids proteïnogènics, i els seus codons són GAA i GAG. És un aminoàcid no essencial. Els anions carboxilats i sals de l'àcid glutàmic es coneixen com a glutamats.

Química[modifica | modifica el codi]

El grup funcional àcid carboxílic de la cadena lateral té un pKa de 4.1 i es troba carregat negativament a pH fisiològic degut a la ionització del grup àcid.Esta considerat com un aminoàcid polar i no hidrofòbic

Història[modifica | modifica el codi]

Tot i que es troba de forma natural en una gran varietat d'aliments, la seva contribució gustativa, junt amb la d'altres aminoàcids, no va ser identificada científicament fins a principis del segle vint. La substància va ser descoberta i identificada l'any 1866 pel químic alemany Karl Heinrich Leopold Ritthausen. L'any 1907 l'investigador japonès Kikunae Ikeda, de la Universitat Imperial de Tòquio, va identificar uns cristalls marrons obtinguts de l'evaporació de grans quantitats de brou de kombu com a àcid glutàmic. Aquests cristalls quan es tastaven reproduïen l'inefable però innegable gust que ell detectava en molts aliments, més especialment en algues. El professor Ikeda va anomenar a aquest gust umami. Llavors va patentar un mètode per produir a gran escala una forma cristal·lina de l'àcid glutàmic, el glutamat monosòdic.[1][2]

Biosíntesi[modifica | modifica el codi]

La representació de l'estructura de L-àcid glutàmic.
Reactius Productes Enzims
Glutamine + H2O Glu + NH3 GLS, GLS2
NAcGlu + H2O Glu + Acetat
α-cetoglutarat + NADPH + NH4+ Glu + NADP+ + H2O GLUD1, GLUD2
α-cetoglutarat + α-amino acid Glu + α-oxo àcid transaminasa
1-pirrolina-5-carboxilasa + NAD+ + H2O Glu + NADH ALDH4A1
N-formimina-L-glutamat + FH4 Glu + 5-formimina-FH4 FTCD


Funció i usos[modifica | modifica el codi]

Metabolisme[modifica | modifica el codi]

El glutamat és una molècula clau en el metabolisme cel·lular. En humans, les proteïnes ingerides són degradades pel procés digestiu fins a aminoàcids, que serveixen com a combustible metabòlic per a altres processos en el cos. Un procés clau de la degradació dels aminoàcids és la transaminació, en la qual el grup amino d'un aminoàcid es transfereix a un α-cetoàcid, típicament catalitzada per una transaminasa. La reacció es pot generalitzar com a:

R1-aminoàcid + R2-α-cetoàcid R1-α-cetoàcid + R2-aminoàcid

Un α-cetoàcid molt comú és l'α-cetoglutarat, un intermediari en el cicle de l'àcid cítric. La transaminació de l'α-cetoglutarat allibera glutamat. L' α-cetoàcid resultant és normalment un altre α-cetoàcid útil com a combustible o com a substrat d'altres processos metabòlics. Alguns exemples són:

Alanina + α-cetoglutarat piruvat + glutamat
Aspartat + α-cetoglutarat oxalacetat + glutamat

Tant el piruvat com l'oxalacetat són components clau del metabolisme cel·lular, contribuint com a substrats o metabolits intermediaris en processos fonamentals com la glicòlisis, la gluconeogènesi i també el cicle de Krebs.

El glutamat també juga un paper important en la disposició en el cos del nitrogen de rebuig o en excés. El glutamat experimenta la desaminació, una reacció oxidativa catalitzada per la glutamat deshidrogenasa, com es pot veure:

glutamat + aigua + NADP+ → α-cetoglutarat + NADPH + amoníac + H+

L'amoníac (com a amoni) és llavors excretat principalment en forma d'urea, sintetitzada pel fetge. Així, la transaminació pot ser associada amb la desaminació, permetent de forma efectiva l'eliminació del nitrogen dels grups amino dels aminoàcids, per mitjà de glutamat que actua d'intermediari, i finalment la seva excreció del cos en forma d'urea.

Neurotransmissor[modifica | modifica el codi]

El glutamat és el neurotransmissor excitador més abundant en el sistema nerviós vertebrat. A les sinapsis químiques, el glutamat s'emmagatzema en vesícules. El impulsos nerviosos provoquen l'alliberament del glutamat de la cèl·lula pre-sinàptica. En la cèl·lula oposada, post-sinàptica, es localitzen receptors del glutamat com l'NMDA que en reaccionar amb el glutamat s'activen. Degut al seu paper en la plasticitat sinàptica el glutamat està implicat en funcions cognitives com ara l'aprenentatge i la memòria. La forma de plasticitat coneguda com a potenciació a llarg termini té lloc a les sinapsis glutamatèrgiques en l'hipocamp, neocòrtex i altres parts del cervell.

Els transportadors del glutamat[3] es troben en les membranes de les neurones i cèl·lules de la glia. Treuen ràpidament el glutamat de l'espai extracel·lular. En cas de dany cerebral o de malaltia, poden treballar en sentit contrari, acumulant-se un excés de glutamat a l'exterior de les cèl·lules. Aquest procés pot produir exocitotoxicitat que és deguda a l'entrada d'ions de calci a les cèl·lules pels canals de NMDA, comportant un dany neuronal i, amb el temps, la mort cel·lular. Els mecanismes de mort cel·lular inclouen:

  • Dany als mitocondris degut a l'excés de Ca2+[4] en el medi intracel·lular.
  • L'aparició dels factors de transcripció per a gens pre-apoptòtics o la inhibició d'aquests factors per a gens anti-apoptòtics, mediada per Glu/Ca2+

La exotocicitat deguda al glutamat es troba en un conjunt de cascades isquèmiques i està associada amb l'ictus i malalties com la escleròsi múltiple, Latrsime, autisme, algunes formes de retard mental i Alzheimer.

L'àcid glutàmic ha estat implicat en episòdis d'epilèpsia. La injecció d'àcid glutàmic en neurones produeix despolaritzacións espontànies amb una freqüencia d'un segon i el patró de reacció és semblant al que s'anomena despolarització paraxosimal en un atac epilèptic. Aquest canvi en el potencial de membrana en repòs als focos de l'atac podria causar l'obertura espontània dels canals de calci operats per voltatge, comportant l'alliberament d'àcid glutàmic i un augment en la despolarització a continuació.

Les tècniques experimentals per detectar glutamat en cèl·lules intactes inclouen l'ús de nanosensors creats amb enginyeria genètica.[5] El sensor és una fusió entre una proteïna que s'uneix al glutamat i dues proteïnes fluorescents. Quan el glutamat s'uneix a la proteïna, la fluorescència del sensor sota llum ultraviolada canvia degut a la ressonància entre els dos fluoròfors. La introducció del nanosensor en les cèl·lules permet la detecció òptica de la concentració de glutamat. També es coneixen anàlegs, equivalents sintètics de l'àcid glutàmic que poden ser activats amb llum ultraviolada i microscopis d'exitació de dos fotons.[6] Aquest mètode d'alliberament ràpid per mitjà de fotoestimulació és útil per estudiar la connexió entre neurones i per entendre el funcionament de la sinapsis.

L'evolució dels receptors de glutamat és totalment oposada en els invertebrats, particularment en artròpodes i nematodes, on el glutamat estimula l'obertura de canals de clor. Les subunitats β del receptor responen amb una gran afinitat al glutamat i la glicina.[7] L'objectiu terapèutic de la teràpia antelmintica ha sigut concentrar-se en aquests receptors utilitzant les avermictines. Les avermictines es dirigeixen a la subunitat α dels canals de clor seleccionats per glutamat amb gran afinitat.[8] També s'han descrit aquests receptors en artròpodes, com la ‘'Drosophila melanogaster[9] i Lepeophtheirus salmonis.[10] La activació irreversible d'aquests receptors amb avermictina produeix la hiperpolarització de les sinapsis i les juntes neuromusculars provocant una paràlisis flàccida i la mort del nematode o artròpode.

Circuits gltuamèrics de senyalització no–sinàptica en el cervell[modifica | modifica el codi]

En cervells de drosophila el glutamat extracel·lular regula la agrupació post-sinàptica dels receptors de glutamat, a través d'un procés que implica una desensibiliització del receptor.[11] Un gen expressat en cèl·lules glials transporta activament el glutamat cap a l'espai extracel·lular,[11] mentre estimula els receptors de glutamat metabotròpics del grup II al nucleus accumbens. S'ha trobat que aquest gen redueix els nivells de glutamat extracel·lulars.[12] Això suggereix que el glutamat extracel·lular juga un paper com a “hormona” en un gran sistema homeostàtic.

Precursos del GABA[modifica | modifica el codi]

El glutamat també és utilitzat com a precursor per a la síntesis de l'inhibidor GABA en neurones GABA-èrgiques. Aquesta reacció és catalitzada per la glutamat descarboxilasa (GAD) que és més abundant en el cerebel i en el pàncrees.

El síndrome de l'home rigid (Stiff-man) és un desordre neurològic causat per l'atac de la GAB per part d'anticossos, cosa que comporta una disminució de la síntesis de GABA i per tant reaccions incontrolades dels músculs com ara espasmes o rigidesa muscular. Com que el pancreas també té una important presència de l'enzim GAD, els anticossos ataquen el pancreas produint diabetis mellitus en les persones afectades per aquest síndrome.

Edulcorant[modifica | modifica el codi]

L'àcid glutàmic lliure es troba en una gran varietat d'aliments, inclòs el formatge i la salsa de soja. És el responsable de produir un dels cinc gustos bàsics que té el sentit del gust en els humans (umami). L'àcid glutàmic sovint és emprat com a additiu alimentari i edulcorant en forma de glutamat monosòdic (sal sòdica de l'àcid glutàmic).

Nutrient[modifica | modifica el codi]

El peix, la carn, productes làctics, kombu i aviram són fonts excel·lents d'àcid glutàmic. També ho són algunes plantes riques en proteïnes. Un 95% del glutamat ingerit en la dieta és metabolitzat per les cèl·lules intestinals en un primer pas.[13]

Creixement de vegetals[modifica | modifica el codi]

L'auxigro és una preparació que conté un 29,2% d'àcid glutàmic que indueix el creixement de les plantes.[14]

Producció[modifica | modifica el codi]

El grup xinès Eufeng Group Limited és el productor més gran d'àcid glutàmic en el món, amb una capacitat que arribava a 300,000 tones a finals del 2006; representa el 30% del mercat xinès. Meihua és el segon productor més gran. Conjuntament amb els cinc principals productors es reparteixen un 50% del mercat xinès que té una demanda anual de 1.1 milions de tones mentre que la demanda global ( incloent la xina) és de 1.7 milions de tones anuals.

Farmacologia[modifica | modifica el codi]

La droga fenciclidina, o DCP, inhibeix de forma no competitiva el receptor NMDA de l'àcid glutàmic. Per aquesta raó les dosis sub-anastètiques de cetamina tenen un fort efecte dissociant i al·lucinogen. El glutamat no travessa amb facilitat la membrana cerebrovascular, però, en canvi, aquest transport és mediat per un transportador d'elevada afinitat. .[15] També es pot transformar en glutamina.

Vegeu també[modifica | modifica el codi]

Referències[modifica | modifica el codi]

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Àcid glutàmic
  1. Renton, Alex. «If MSG is so bad for you, why doesn't everyone in Asia have a headache?». The Guardian, 2005-07-10 [Consulta: 21 novembre 2008].
  2. «Kikunae Ikeda Sodium Glutamate». Japan Patent Office, 2002-10-07. [Consulta: 2008-11-21].
  3. Shigeri Y, Seal RP, Shimamoto K. «Molecular pharmacology of glutamate transporters, EAATs and VGLUTs». Brain Res. Brain Res. Rev., 45, 3, July 2004, pàg. 250–65. DOI: 10.1016/j.brainresrev.2004.04.004. PMID: 15210307.
  4. Manev H, Favaron M, Guidotti A, Costa E. «Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death». Mol. Pharmacol., 36, 1, July 1989, pàg. 106–12. PMID: 2568579.
  5. Okumoto, S., et al.. «Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors». Proceedings of the National Academy of Sciences U.S.A, 102, 24, 2005, pàg. 8740–8745. DOI: 10.1073/pnas.0503274102. PMC: 15939876. PMID: 15939876.
  6. Ellis-Davies, G.C.R., et al.. «4- Carboxymethoxy-5,7-dinitroindolinyl-Glu: an improved caged glutamate for expeditious ultra- violet and 2-photon photolysis in brain slices». Journal of Neuroscience, 27, Jun, 2007, pàg. 6601–6604. DOI: 10.1523/JNEUROSCI.1519-07.2007. PMID: 17581946.
  7. Laughton, D.L., Wheeler, S.V., Lunt, G.G. and Wolstenholme, A.J. 1995. "The beta-subunit of Caenorhabditis elegans avermectin receptor responds to glycine and is encoded by chromosome 1". J. Neurochem. 64, 2354-2357
  8. Cully, D.F., Vassilatis, D.K., Liu, K.K., Paress, P.S., Van der Ploeg, L.H.T., Schaeffer, J.M. and Arena, J.P. 1994. "Cloning of an avermectin-sensitive glutamate gated choride channels from Caenorhabditis elegans". Nature 371, 707-711
  9. Cully, D.F., Paress, P.S., Liu, K.K., Schaeffer, J.M. and Arena, J.P. 1996. "Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin". J. Biol. Chem. '271, 20187-20191'
  10. Tribble, N.D., Burka, J.F. and Kibenge, F.S.B. 2007. "Identification of the genes encoding for putative gamma aminobutyric acid (GABA) and glutamate-gated chloride channel (GluCl) alpha receptor subunits in sea lice (Lepeophtheirus salmonis)". J. Vet. Pharmacol. Ther. 30, 163-167
  11. 11,0 11,1 Augustin H, Grosjean Y, Chen K, Sheng Q, Featherstone DE. «Nonvesicular release of glutamate by glial xCT transporters suppresses glutamate receptor clustering in vivo». Journal of Neuroscience, 27, 1, 2007, pàg. 111–123. DOI: 10.1523/JNEUROSCI.4770-06.2007. PMC: 2193629. PMID: 17202478.
  12. Zheng Xi, Baker DA, Shen H, Carson DS, Kalivas PW. «Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens». Journal of Pharmacology and Experimental Therapeutics, 300, 1, 2002, pàg. 162–171. DOI: 10.1124/jpet.300.1.162. PMID: 11752112.
  13. Reeds, P.J., et al.. «Intestinal glutamate metabolism». Journal of Nutrition, 130, 4s, 1 abril 2000, pàg. 978S–982S. PMID: 10736365.
  14. Yasko, Amy. (en anglès). Holistic Health Internation, 2004, p.98. ISBN 1424343208. 
  15. Smith QR. «Transport of glutamate and other amino acids at the blood-brain barrier». J. Nutr., 130, 4S Suppl, April 2000, pàg. 1016S–22S. PMID: 10736373.



Principals famíles bioquímiques
Àcids nucleics | Alcaloides | Aminoàcids | Carbohidrats | Carotenoides | Cofactors enzimàtics | Esteroides | Flavonoides | Glicòsids | Lípids | Pèptids | Policètids | Tetrapirrols | Terpens
Anàlegs d'àcids nucleics: Els 20 aminoàcids proteïnògens o comuns. Anàlegs d'àcids nucleics :
Àcid aspàrtic | Àcid glutàmic | Alanina | Arginina | Asparagina | Cisteïna | Fenilalanina* | Glutamina | Glicina | Histidina | Isoleucina* | Leucina* | Lisina* | Metionina* | Prolina | Serina | Treonina* | Triptòfan* | Tirosina | Valina*
Aminoàcids postranscripcionals
Cistina | Hidroxiprolina | Selenocisteïna

Els 8 aminoàcids essencials pels humans estan marcats amb un asterisc.

|}|}