Teoria de grups

De Viquipèdia
Dreceres ràpides: navegació, cerca

En aquest article es desenvoluparà un enfocament tècnic de la teoria de grups, per una introducció planera vegeu: Introducció a la teoria de grups

La teoria de grups dins la matemàtica estudia les propietats dels grups, i com classificar-los.

Un grup matemàtic és un magma ( un parell (G, *) ), on G és un conjunt no buit i * una llei de composició interna, això és * : G\times G \to G, que verifica:

  1. a*(b*c)=(a*b)*c, \forall a,b,c \in G (associativitat)
  2.  \exists 1 \in A : 1*a=a*1=a (element neutre)
  3. \forall a \in A \exists a^{-1} \in A : a*a^{-1}=a^{-1}*a=1 (element invers)

En altres paraules un grup és un conjunt amb una operació binària associativa, tancada que té element neutre i inversos.

Un grup on es verifiqui a*b=b*a per a qualsevol parell d'elements a,b en G s'anomena abelià o commutatiu.

Exemples:

  • (ℝ,+) és un grup abelià. ℝ és el conjunt dels nombres reals i + la suma usual.
  • (ℝ-{0},·) és grup abelià. (A remarcar que el zero no té invers multiplicatiu, per això se l'exclou).
  • (ℤ/nℤ,+) és grup, on ℤ/nℤ és el conjunt de residus mòdul n.

S'anomena ordre d'un grup G a la cardinalitat de G. Un grup es diu grup finit o grup infinit si el conjunt és finit o infinit. En l'exemple citat, els formats amb ℝ són infinits i el format amb ℤ/nℤ és finit. La classificació dels grups simples finits és un dels grans avenços matemàtics del segle XX.

Els grups són els blocs per construir estructures algebraiques més elaborades tals com anells, cossos, espais vectorials, etc. i són recurrents a les matemàtiques. La teoria de grups té moltes aplicacions en química i física i és potencialment aplicable a qualsevol problema caracteritzat per la seva simetria.

Història[modifica | modifica el codi]

La teoria de grups té tres fonts històriques principals: la teoria de nombres, la teoria d'equacions algebraiques, i la geometria. La branca de teoria de nombres l'encetava Leonhard Euler, i es desenvolupava en el treball de Gauss sobre aritmètica modular i grups multiplicatius i additius relacionats amb cossos quadràtics. Els primers resultats sobre permutacions els obtenien Lagrange, Ruffini, i Abel en el seu treball de cerca de solucions generals d'equacions polinòmiques de grau superior. Évariste Galois encunyava el terme "grup" i establia una connexió, ara coneguda com a teoria de Galois, entre la naixent teoria de grups i la Teoria de cossos. En geometria, els grups incialment es varen considerar importants en geometria projectiva i, més tard, en geometria no euclidiana. El programa d'Erlangen de Felix Klein feia la famosa proclama de que la teoria de grup és el principi organitzatiu de la geometria.

Galois, durant els anys 1830, va ser el primer a fer servir grups per determinar la resolubilitat d'equacions polinòmiques. Arthur Cayley i Augustin Louis Cauchy duien aquestes investigacions més lluny creant la teoria de grups de permutacions. La segona font històrica per a grups prové de situacions geomètriques. En un intent d'arribar a lligar geometries possibles (com la geometria euclidiana, la geometria hiperbòlica o la geometria projectiva) fent servir la teoria de grups, Felix Klein iniciava el programa d'Erlangen. Sophus Lie, el 1884, començava a fer servir grups (ara anomenats Grups de Lie relacionats amb problemes analítics. En tercer lloc, els grups eren, (primer implícitament i més tard explícitament) utilitzats en la teoria de nombres algebraics.

El diferents abast d'aquestes primeres fonts ocasionava idees diferents de grups. La teoria de grups es va comenar a unificar al voltant de 1880. Des de llavors, l'impacte de la teoria de grups ha estat sempre creixent, causant al naixement d'àlgebra abstracta a començaments del segle XX, la teoria de la representació, i molts més camps influents. La classificació dels grups simples finits és un cos vast de treball des de meitats del segle XX, dedicat a la classificació de tots els grups simples finits.

Altres importants matemàtics en aquest camp inclouen a Cayley, Emil Artin, Emmy Noether, Sylow entre molts altres. Va ser Walter von Dick qui en 1882, va donar la moderna definició de grup.

Principals classes de grups[modifica | modifica el codi]

Article principal: Grup (matemàtiques)

La gamma de grups que s'estudien s'ha expandit gradualment des dels grups de permutacions finites i exemples especials de grup de matrius fins a grups abstractes que es poden especificar a través d'una presentació per generadors i relacions.

Grups de permutacions[modifica | modifica el codi]

La primera classe de grups que es va estudiar de forma sistemàtica varen ser els grups de permutacions. Donat qualsevol conjunt X i una col·lecció G de bijeccions de X en si mateix (conegudes com a permutacions) que és tancat sota composicions i la inversa, G és un grup actuant sobre X. Si X consta de n elements i G consisteix en totes les permutacions, G és el grup simètric Sn ; en general G és un subgrup del grup simètric de X. Una primera construcció deguda a Cayley presentava qualsevol grup com a grup de permutació, actuant sobre si mateix (X = G) per mitjà de la representació regular per l'esquerra.

En molts casos, l'estructura d'un grup de permutació es pot estudiar fent servir les propietats de la seva acció en el conjunt corresponent. Per exemple, d'aquesta manera es demostra que per n ≥ 5, el grup alternat An és simple, és a dir no admet subgrups normals propis. Aquest fet juga un paper clau en la impossibilitat de resoldre una equació algebraica general de grau n ≥ 5 amb radicals.

Grup de matrius[modifica | modifica el codi]

La pròxima classe important de grups es ve donat pels grups de matrius, o grups lineals. Aquí G és un conjunt de matrius invertibles d'un ordre donat n sobre un cos K que és tancat sota el producte i la inversa. Tal grup actua sobre l'espai vectorial n-dimensional Kn per transformacions lineals. Aquesta acció fa als grups de matrius conceptualment similars als grups de permutacions, i la geometria de l'acció es pot explotar de manera útil per establir propietats del grup G.

Grups de transformacions[modifica | modifica el codi]

Els grups de permutacions i els grups de matrius són casos especials de grups de transformació: grups que actuen sobre un cert espai X conservant la seva estructura inherent. En el cas de grups de permutació X és un conjunt; pels grups de matrius X és un espai vectorial. El concepte d'un grup de transformació està estretament relacionat amb el concepte de grup de simetria: els grups de transformació freqüentment consisteixen en totes les transformacions que conserven una certa estructura.

La teoria de grups de transformació forma un pont que connecta la teoria de grups amb la geometria diferencial. Una llarga línia de recerca, que s'origina amb Lie i Klein, considera accions de grup sobre varietats per homeomorfismes o difeomorfismes. Els grups mateixos poden ser discrets o continus.

Grups abstractes[modifica | modifica el codi]

La majoria dels grups considerats en la primera etapa del desenvolupament de teoria de grup eren "concrets", s'havien identificat a través de nombres, permutacions, o matrius. No va ser fins a finals del segle XIX que la idea d'un grup abstracte com a conjunt amb operacions que satisfeien un cert sistema d'axiomes començava a prendre cos. Una manera típica d'especificar un grup abstracte és a través d'una presentació per generadors i relacions,

 G = \langle S|R\rangle.

Una font significativa de grups abstractes ve donada per la construcció d'un grup factorial, o grup quocient, G/H, d'un grup G per un subgrup normal H. Els Grups de classe de cossos de nombres algebraics varen estar entre els primers exemples de grups quocients, de màxim interès en teoria de nombres. Si un grup G és un grup de permutacions en un conjunt X, el grup quocient G/H ja no actua sobre X; però la idea d'un grup abstracte permet a no preocupar-se d'aquesta discrepància.

El canvi de perspectiva des de grups concrets a grups abstractes fa que sigui natural considerar propietats de grups que són independents d'una realització particular, o en llenguatge modern, invariants sota isomorfismes, així com les classes de grups amb una propietat donada: grups finits, grups periòdics, grups simples, grups resolubles, etcètera. Més que explorar les propietats d'un grup individual, es procura establir resultats que s'apliquen a una classe sencera de grups. El paradigma va ser de gran importància per al desenvolupament de les matemàtiques: presagiava la creació de l'àlgebra abstracta en els treballs de Hilbert, Emil Artin, Emmy Noether, i matemàtics de la seva escola.

Grups topològics i algebraics[modifica | modifica el codi]

Una elaboració important del concepte de grup es dóna si G està dotat amb estructura addicional, notablement, d'un espai topològic, varietat diferenciable, o varietat algebraica. Si les operacions de grup m (multiplicació) i i (inversió),


\begin{array}[c]{lccc}
m: & G\times G & \to & G \\
& (g,h) & \mapsto & gh \\
\end{array}
\qquad
\begin{array}[c]{lccc}
i: & G & \to & G \\
& g & \mapsto & g^{-1} \\
\end{array}

són compatibles amb aquesta estructura, és a dir són continus, llisos o regulars (en el sentit de geometria algebraica) llavors G esdevé un grup topològic, un grup de Lie, o un grup algebraic.[1]

La presència d'estructura extra relaciona aquests tipus de grups amb unes altres disciplines matemàtiques i significa que hi ha disponibles més eines pel seu estudi. Els grups topològics formen un camp natural per a l'anàlisi harmònica abstracta, mentre que els grups de lie són els pilars de la geometria diferencial i la teoria de representació unitària. Certes qüestions de classificació que no es poden resoldre en general es poden enfocar i resoldre's per a subclasses especials de grups. Així, els grups de Lie connexos compactes s'han classificat completament. Hi ha una relació fructífera entre grups abstractes infinits i els grups topològics: quan sigui que un grup Γ pot ser materialitzat com a enreixat en un grup topològic G, la geometria i l'anàlisi corresponents a G produeixen resultats importants sobre Γ. Una tendència comparativament recent en teoria de grups finits explota les seves connexions amb grups topològics compactes (Grups profinits).

Notes i referències[modifica | modifica el codi]

  1. Aquest procés d'imposar estructura extra s'ha formalitzat a través de la idea d'un objecte de grup en una categoria (matemàtiques) adequada. Així els Grups de Lie són objectes de grup en la categoria de varietats diferenciables i els grups algebraics afins són objectes de grup en la categoria de varietats algebraiques afins.
A Wikimedia Commons hi ha contingut multimèdia relatiu a: Teoria de grups Modifica l'enllaç a Wikidata