Sistema solar: diferència entre les revisions

De la Viquipèdia, l'enciclopèdia lliure
Contingut suprimit Contingut afegit
Cap resum de modificació
+info
Línia 233: Línia 233:


The interplanetary medium is home to at least two disc-like regions of [[cosmic dust]]. The first, the [[interplanetary dust cloud|zodiacal dust cloud]], lies in the inner Solar System and causes the [[zodiacal light]]. It was likely formed by collisions within the asteroid belt brought on by interactions with the planets.<ref>{{ref-web|any=1998 |títol=Long-term Evolution of the Zodiacal Cloud |url=http://astrobiology.arc.nasa.gov/workshops/1997/zodiac/backman/IIIc.html |consulta=2007-02-03}}</ref> The second dust cloud extends from about 10 AU to about 40 AU, and was probably created by similar collisions within the [[Kuiper belt]].<ref>{{ref-web|any=2003 |títol=ESA scientist discovers a way to shortlist stars that might have planets |obra=ESA Science and Technology |url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=29471 |consulta=2007-02-03}}</ref><ref>{{ref-publicació|cognom=Landgraf |nom=M. |coautors=Liou, J.-C.; Zook, H. A.; Grün, E. |data= maig 2002 |títol=Origins of Solar System Dust beyond Jupiter |publicació=[[The Astronomical Journal]] |volum=123 |exemplar=5 |pàgines=2857–2861 |doi=10.1086/339704 |url=http://astron.berkeley.edu/~kalas/disksite/library/ladgraf02.pdf |consulta=2007-02-09 |bibcode=2002AJ....123.2857L}}</ref>
The interplanetary medium is home to at least two disc-like regions of [[cosmic dust]]. The first, the [[interplanetary dust cloud|zodiacal dust cloud]], lies in the inner Solar System and causes the [[zodiacal light]]. It was likely formed by collisions within the asteroid belt brought on by interactions with the planets.<ref>{{ref-web|any=1998 |títol=Long-term Evolution of the Zodiacal Cloud |url=http://astrobiology.arc.nasa.gov/workshops/1997/zodiac/backman/IIIc.html |consulta=2007-02-03}}</ref> The second dust cloud extends from about 10 AU to about 40 AU, and was probably created by similar collisions within the [[Kuiper belt]].<ref>{{ref-web|any=2003 |títol=ESA scientist discovers a way to shortlist stars that might have planets |obra=ESA Science and Technology |url=http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=29471 |consulta=2007-02-03}}</ref><ref>{{ref-publicació|cognom=Landgraf |nom=M. |coautors=Liou, J.-C.; Zook, H. A.; Grün, E. |data= maig 2002 |títol=Origins of Solar System Dust beyond Jupiter |publicació=[[The Astronomical Journal]] |volum=123 |exemplar=5 |pàgines=2857–2861 |doi=10.1086/339704 |url=http://astron.berkeley.edu/~kalas/disksite/library/ladgraf02.pdf |consulta=2007-02-09 |bibcode=2002AJ....123.2857L}}</ref>

==Inner Solar System==
The inner Solar System is the traditional name for the region comprising the terrestrial planets and asteroids.<ref name=inner>{{cite web |title=Inner Solar System |publisher=NASA Science (Planets) |url=http://nasascience.nasa.gov/planetary-science/exploring-the-inner-solar-system |accessdate=2009-05-09}}</ref> Composed mainly of [[silicate]]s and metals, the objects of the inner Solar System are relatively close to the Sun; the radius of this entire region is shorter than the distance between the orbits of Jupiter and Saturn.

===Inner planets=== <!--This heading linked from [[Extrasolar planet]]-->
{{Main|Terrestrial planet}}
[[File:Telluric planets size comparison.jpg|thumb|upright=1.4|The inner planets. From left to right: [[Earth]], [[Mars]], [[Venus]], and [[Mercury (planet)|Mercury]] (sizes to scale, interplanetary distances not)]]

The four inner or terrestrial planets have dense, [[rock (geology)|rocky]] compositions, few or no [[natural satellite|moons]], and no [[planetary ring|ring systems]]. They are composed largely of [[Refractory (planetary science)|refractory]] minerals, such as the [[silicate]]s, which form their [[crust (geology)|crusts]] and [[mantle (geology)|mantles]], and metals such as [[iron]] and [[nickel]], which form their [[planetary core|cores]]. Three of the four inner planets (Venus, Earth and Mars) have [[atmosphere]]s substantial enough to generate [[weather]]; all have [[impact crater]]s and [[tectonics|tectonic]] surface features such as [[rift valley]]s and [[volcano]]es. The term ''inner planet'' should not be confused with ''[[inferior planet]]'', which designates those planets that are closer to the Sun than Earth is (i.e. Mercury and Venus).

====Mercury====
: [[Mercury (planet)|Mercury]] (0.4&nbsp;[[Astronomical unit|AU]] from the Sun) is the closest planet to the Sun and the smallest planet in the Solar System (0.055 Earth masses). Mercury has no natural satellites, and its only known geological features besides impact craters are lobed ridges or [[rupes]], probably produced by a period of contraction early in its history.<ref>Schenk P., Melosh H. J. (1994), ''Lobate Thrust Scarps and the Thickness of Mercury's Lithosphere'', Abstracts of the 25th Lunar and Planetary Science Conference, 1994LPI....25.1203S</ref> Mercury's almost negligible atmosphere consists of atoms blasted off its surface by the solar wind.<ref>{{cite web |year=2006 |author=Bill Arnett |title=Mercury |work=The Nine Planets |url=http://www.nineplanets.org/mercury.html |accessdate=2006-09-14}}</ref> Its relatively large iron core and thin mantle have not yet been adequately explained. Hypotheses include that its outer layers were stripped off by a giant impact; or, that it was prevented from fully accreting by the young Sun's energy.<ref>Benz, W., Slattery, W. L., Cameron, A. G. W. (1988), ''Collisional stripping of Mercury's mantle'', Icarus, v. 74, p. 516–528.</ref><ref>Cameron, A. G. W. (1985), ''The partial volatilization of Mercury'', Icarus, v. 64, p. 285–294.</ref>

====Venus====
: [[Venus]] (0.7 AU from the Sun) is close in size to Earth (0.815 Earth masses) and, like Earth, has a thick silicate mantle around an iron core, a substantial atmosphere, and evidence of internal geological activity. It is much drier than Earth, and its atmosphere is ninety times as dense. Venus has no natural satellites. It is the hottest planet, with surface temperatures over 400 [[Celsius|°C]] (752°F), most likely due to the amount of [[greenhouse gas]]es in the atmosphere.<ref>{{cite journal |author=Mark Alan Bullock |title=The Stability of Climate on Venus |publisher=Southwest Research Institute |year=1997 |url=http://www.boulder.swri.edu/~bullock/Homedocs/PhDThesis.pdf |format=PDF |accessdate=2006-12-26 }}</ref> No definitive evidence of current geological activity has been detected on Venus, but it has no magnetic field that would prevent depletion of its substantial atmosphere, which suggests that its atmosphere is frequently replenished by volcanic eruptions.<ref>{{cite web |year=1999 |author=Paul Rincon |title=Climate Change as a Regulator of Tectonics on Venus |work=Johnson Space Center Houston, TX, Institute of Meteoritics, University of New Mexico, Albuquerque, NM |url=http://www.boulder.swri.edu/~bullock/Homedocs/Science2_1999.pdf |format=PDF |accessdate=2006-11-19}}</ref>

====Earth====
: [[Earth]] (1 AU from the Sun) is the largest and densest of the inner planets, the only one known to have current geological activity, and the only place where [[life]] is known to exist.<ref name=life>{{cite web |title=What are the characteristics of the Solar System that lead to the origins of life? |publisher=NASA Science (Big Questions) |url=http://science.nasa.gov/planetary-science/big-questions/what-are-the-characteristics-of-the-solar-system-that-lead-to-the-origins-of-life-1/ |accessdate=2011-08-30}}</ref> Its liquid [[hydrosphere]] is unique among the terrestrial planets, and it is the only planet where [[plate tectonics]] has been observed. Earth's atmosphere is radically different from those of the other planets, having been altered by the presence of life to contain 21% free [[oxygen]].<ref>{{cite web |title=Earth's Atmosphere: Composition and Structure |author=Anne E. Egger, M.A./M.S. |work=VisionLearning.com |url=http://www.visionlearning.com/library/module_viewer.php?c3=&mid=107&l=|accessdate=2006-12-26}}</ref> It has one natural satellite, the [[Moon]], the only large satellite of a terrestrial planet in the Solar System.

====Mars====
: [[Mars]] (1.5&nbsp;AU from the Sun) is smaller than Earth and Venus (0.107 Earth masses). It possesses an atmosphere of mostly [[carbon dioxide]] with a surface pressure of 6.1 millibars (roughly 0.6% of that of Earth).<ref>{{cite book|title= Encyclopaedia of the Solar System|editor=Lucy-Ann McFadden et al.|chapter=Mars Atmosphere: History and Surface Interactions|author=David C. Gatling, Conway Leovy|pages=301–314|year=2007}}</ref> Its surface, peppered with vast volcanoes such as [[Olympus Mons]] and rift valleys such as [[Valles Marineris]], shows geological activity that may have persisted until as recently as 2 million years ago.<ref>{{cite web |year=2004 |title=Modern Martian Marvels: Volcanoes? |author=David Noever |work=NASA Astrobiology Magazine |url=http://www.astrobio.net/news/modules.php?op=modload&name=News&file=article&sid=1360&mode=thread&order=0&thold=0 |accessdate=2006-07-23}}</ref> Its red colour comes from [[iron(III) oxide|iron oxide]] (rust) in its soil.<ref>{{cite web|title=Mars: A Kid's Eye View|publisher=NASA|url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mars&Display=Kids|accessdate=2009-05-14}}</ref> Mars has two tiny natural satellites ([[Deimos (moon)|Deimos]] and [[Phobos (moon)|Phobos]]) thought to be captured [[asteroid]]s.<ref>{{cite web |year=2004 |title=A Survey for Outer Satellites of Mars: Limits to Completeness |author=Scott S. Sheppard, David Jewitt, and Jan Kleyna |work=[[Astronomical Journal]] |url=http://www2.ess.ucla.edu/~jewitt/papers/2004/SJK2004.pdf|accessdate=2006-12-26}}</ref>

===Asteroid belt===
{{Main|Asteroid belt}}
[[File:InnerSolarSystem-en.png|thumb|Image of the [[asteroid belt]] (white), the [[Jupiter trojan]]s (green), the [[Hilda family|Hildas]] (orange), and [[near-Earth object|near-Earth asteroids]].]]

[[Asteroid]]s are [[Small Solar System body|small Solar System bodies]]<ref group=lower-alpha name=footnoteB /> composed mainly of [[refractory (astronomy)|refractory]] rocky and metallic [[mineral]]s, with some ice.<ref>{{cite web|title=Are Kuiper Belt Objects asteroids? Are large Kuiper Belt Objects planets?
|publisher=[[Cornell University]]|url=http://curious.astro.cornell.edu/question.php?number=601|accessdate=2009-03-01}}</ref>

The asteroid belt occupies the orbit between Mars and Jupiter, between 2.3 and 3.3&nbsp;AU from the Sun. It is thought to be remnants from the Solar System's formation that failed to coalesce because of the gravitational interference of Jupiter.<ref>{{cite journal
| author=Petit, J.-M.; Morbidelli, A.; Chambers, J.
| title=The Primordial Excitation and Clearing of the Asteroid Belt
| journal=[[Icarus (journal)|Icarus]]
| year=2001
| volume=153
| issue=2
| pages=338–347
| url=http://www.gps.caltech.edu/classes/ge133/reading/asteroids.pdf
| format=PDF
| accessdate=2007-03-22 | doi = 10.1006/icar.2001.6702
| bibcode=2001Icar..153..338P
}}</ref>

Asteroids range in size from hundreds of kilometres across to microscopic. All asteroids except the largest, Ceres, are classified as small Solar System bodies.<ref>{{cite web|title=IAU Planet Definition Committee|publisher=International Astronomical Union|year=2006|url=http://www.iau.org/public_press/news/release/iau0601/newspaper/|accessdate=2009-03-01}}</ref>

The asteroid belt contains tens of thousands, possibly millions, of objects over one kilometre in diameter.<ref>{{cite web |year=2002 |title=New study reveals twice as many asteroids as previously believed |work=ESA |url=http://www.esa.int/esaCP/ESAASPF18ZC_index_0.html|accessdate=2006-06-23}}</ref> Despite this, the total mass of the asteroid belt is unlikely to be more than a thousandth of that of Earth.<ref name=Krasinsky2002>{{cite journal |authorlink=Georgij A. Krasinsky |first=G. A. |last=Krasinsky |coauthors=[[Elena V. Pitjeva|Pitjeva, E. V.]]; Vasilyev, M. V.; Yagudina, E. I. |bibcode=2002Icar..158...98K |title=Hidden Mass in the Asteroid Belt |journal=[[Icarus (journal)|Icarus]] |volume=158 |issue=1 |pages=98–105 |date=July 2002 |doi=10.1006/icar.2002.6837}}</ref> The asteroid belt is very sparsely populated; [[Space probe|spacecraft]] routinely pass through without incident. Asteroids with diameters between 10 and 10<sup>−4</sup>&nbsp;m are called [[meteoroid]]s.<ref>{{cite journal |date=September 1995 |title=On the Definition of the Term Meteoroid |journal=[[Quarterly Journal of the Royal Astronomical Society]] |volume=36 |issue=3 |pages=281–284 |bibcode=1995QJRAS..36..281B}}</ref>

====Ceres====
[[Ceres (dwarf planet)|Ceres]] (2.77&nbsp;AU) is the largest asteroid, a [[protoplanet]], and a dwarf planet.<ref group=lower-alpha name=footnoteB /> It has a diameter of slightly under 1000&nbsp;km, and a mass large enough for its own gravity to pull it into a spherical shape. Ceres was considered a planet when it was discovered in 1801, and was reclassified to asteroid in the 1850s as further observations revealed additional asteroids.<ref>{{cite web |title=History and Discovery of Asteroids |format=DOC |work=NASA |url=http://dawn.jpl.nasa.gov/DawnClassrooms/1_hist_dawn/history_discovery/Development/a_modeling_scale.doc |accessdate=2006-08-29}}</ref> It was classified as a dwarf planet in 2006.

====Asteroid groups====
Asteroids in the asteroid belt are divided into [[asteroid group]]s and [[:Category:Asteroid groups and families|families]] based on their orbital characteristics. [[Asteroid moon]]s are asteroids that orbit larger asteroids. They are not as clearly distinguished as planetary moons, sometimes being almost as large as their partners. The asteroid belt also contains [[main-belt comet]]s, which may have been the source of Earth's water.<ref>{{cite web |year=2006 |author=Phil Berardelli |title=Main-Belt Comets May Have Been Source Of Earths Water |work=SpaceDaily |url=http://www.spacedaily.com/reports/Main_Belt_Comets_May_Have_Been_Source_Of_Earths_Water.html |accessdate=2006-06-23}}</ref>

[[Jupiter trojan]]s are located in either of Jupiter's [[L5 point|L<sub>4</sub> or L<sub>5</sub> points]] (gravitationally stable regions leading and trailing a planet in its orbit); the term "trojan" is also used for small bodies in any other planetary or satellite Lagrange point. [[Hilda family|Hilda asteroids]] are in a 2:3 [[Orbital resonance|resonance]] with Jupiter; that is, they go around the Sun three times for every two Jupiter orbits.<ref name=Barucci>{{cite book|last=Barucci|first=M. A.|coauthors=Kruikshank, D.P.; Mottola S.; Lazzarin M.|year=2002 |chapter=Physical Properties of Trojan and Centaur Asteroids|title=Asteroids III|publisher=University of Arizona Press|pages=273–87|location=Tucson, Arizona}}</ref>

The inner Solar System is also dusted with [[Near-Earth asteroid|rogue asteroids]], many of which cross the orbits of the inner planets.<ref name = "MorbidelliAstIII">{{cite journal|url = http://www.boulder.swri.edu/~bottke/Reprints/Morbidelli-etal_2002_AstIII_NEOs.pdf|title = Origin and Evolution of Near-Earth Objects|journal = Asteroids III|editor = W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel|pages = 409–422|date=January 2002|publisher = University of Arizona Press|format=PDF|bibcode = 2002aste.conf..409M}}</ref>

==Outer Solar System==
The outer region of the Solar System is home to the gas giants and their large moons. Many short-period comets, including the [[Centaur (planetoid)|centaurs]], also orbit in this region. Due to their greater distance from the Sun, the solid objects in the outer Solar System contain a higher proportion of volatiles, such as water, ammonia and methane, than the rocky denizens of the inner Solar System because the colder temperatures allow these compounds to remain solid.

===Outer planets===
{{Main|Outer planets|Gas giant}}
[[File:Gas giants in the solar system.jpg|thumb|From top to bottom: [[Neptune]], [[Uranus]], [[Saturn]], and [[Jupiter]] (Montage with approximate colour and size)]]

The four outer planets, or gas giants (sometimes called Jovian planets), collectively make up 99% of the mass known to orbit the Sun.<ref group=lower-alpha name=footnoteD /> Jupiter and Saturn are each many tens of times the mass of Earth and consist overwhelmingly of hydrogen and helium; Uranus and Neptune are far less massive (<20 Earth masses) and possess more ices in their makeup. For these reasons, some astronomers suggest they belong in their own category, "ice giants".<ref>{{cite web |title=Formation of Giant Planets |author=Jack J. Lissauer, David J. Stevenson |work=NASA Ames Research Center; California Institute of Technology |year=2006 |url=http://www.gps.caltech.edu/uploads/File/People/djs/lissauer&stevenson(PPV).pdf|format=PDF |accessdate=2006-01-16}}</ref> All four gas giants have [[Planetary ring|rings]], although only Saturn's ring system is easily observed from Earth. The term ''[[superior planet]]'' designates planets outside Earth's orbit and thus includes both the outer planets and Mars.

====Jupiter====
: [[Jupiter]] (5.2&nbsp;AU), at 318 Earth masses, is 2.5 times the mass of all the other planets put together. It is composed largely of [[hydrogen]] and [[helium]]. Jupiter's strong internal heat creates semi-permanent features in its atmosphere, such as cloud bands and the [[Great Red Spot]].
: Jupiter has [[Moons of Jupiter|67 known satellites]]. The four largest, [[Ganymede (moon)|Ganymede]], [[Callisto (moon)|Callisto]], [[Io (moon)|Io]], and [[Europa (moon)|Europa]], show similarities to the terrestrial planets, such as volcanism and internal heating.<ref>{{cite web |title=Geology of the Icy Galilean Satellites: A Framework for Compositional Studies |author=Pappalardo, R T |work=Brown University |year=1999 |url=http://www.agu.org/cgi-bin/SFgate/SFgate?&listenv=table&multiple=1&range=1&directget=1&application=fm99&database=%2Fdata%2Fepubs%2Fwais%2Findexes%2Ffm99%2Ffm99&maxhits=200&=%22P11C-10%22 |accessdate=2006-01-16}}</ref> Ganymede, the largest satellite in the Solar System, is larger than Mercury.

====Saturn====
: [[Saturn]] (9.5&nbsp;AU), distinguished by its extensive [[Rings of Saturn|ring system]], has several similarities to Jupiter, such as its atmospheric composition and magnetosphere. Although Saturn has 60% of Jupiter's volume, it is less than a third as massive, at 95 Earth masses, making it the least dense planet in the Solar System.<ref name=universetoday>{{cite web|title=Density of Saturn|url=http://archive.is/LCrCb|work=Fraser Cain|publisher=universetoday.com|accessdate=2013-08-09}}</ref> The rings of Saturn are made up of small ice and rock particles.
: Saturn has [[Moons of Saturn|62 confirmed satellites]]; two of which, [[Titan (moon)|Titan]] and [[Enceladus (moon)|Enceladus]], show signs of geological activity, though they are largely [[Cryovolcano|made of ice]].<ref>{{cite journal|last1=Kargel|first1=J. S.|title=Cryovolcanism on the icy satellites|journal=Earth, Moon, and Planets|volume=67|pages=101–113|year=1994|doi=10.1007/BF00613296|bibcode=1995EM&P...67..101K}}</ref> Titan, the second-largest moon in the Solar System, is larger than Mercury and the only satellite in the Solar System with a substantial atmosphere.

====Uranus====
: [[Uranus]] (19.2&nbsp;AU), at 14 Earth masses, is the lightest of the outer planets. Uniquely among the planets, it orbits the Sun on its side; its [[axial tilt]] is over ninety degrees to the [[ecliptic]]. It has a much colder core than the other gas giants and radiates very little heat into space.<ref>{{cite journal |title=10 Mysteries of the Solar System|journal=[[Astronomy Now]] |volume=19 |pages=65 |year=2005 |bibcode=2005AsNow..19h..65H }}</ref>
: Uranus has [[Moons of Uranus|27 known satellites]], the largest ones being [[Titania (moon)|Titania]], [[Oberon (moon)|Oberon]], [[Umbriel (moon)|Umbriel]], [[Ariel (moon)|Ariel]], and [[Miranda (moon)|Miranda]].

====Neptune====
: [[Neptune]] (30 AU), though slightly smaller than Uranus, is more massive (equivalent to 17 Earths) and therefore more [[Density|dense]]. It radiates more internal heat, but not as much as Jupiter or Saturn.<ref>{{Cite journal|title=Post Voyager comparisons of the interiors of Uranus and Neptune |author=Podolak, M.; Reynolds, R. T.; Young, R. | year=1990|pages=1737|issue=10|volume=17|doi=10.1029/GL017i010p01737 |bibcode=1990GeoRL..17.1737P|journal=Geophysical Research Letters}}</ref>
: Neptune has [[Moons of Neptune|14 known satellites]]. The largest, [[Triton (moon)|Triton]], is geologically active, with [[geyser]]s of [[liquid nitrogen]].<ref>{{cite web |title=The Plausibility of Boiling Geysers on Triton |author=Duxbury, N. S., Brown, R. H. |work=Beacon eSpace |year=1995 |url=http://trs-new.jpl.nasa.gov/dspace/handle/2014/28034?mode=full |accessdate=2006-01-16 }}</ref> Triton is the only large satellite with a [[retrograde orbit]]. Neptune is accompanied in its orbit by several [[minor planet]]s, termed [[Neptune trojan]]s, that are in 1:1 [[Orbital resonance|resonance]] with it.

===Centaurs===
{{Main|Centaur (minor planet)}}
The centaurs are icy comet-like bodies whose orbits have semi-major axes greater than Jupiter's (5.5&nbsp;AU) and less than Neptune's (30&nbsp;AU). The largest known centaur, [[10199 Chariklo]], has a diameter of about 250&nbsp;km.<ref name=spitzer>{{Cite conference|title=Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope |author=John Stansberry, Will Grundy, Mike Brown, Dale Cruikshank, John Spencer, David Trilling, Jean-Luc Margot|booktitle=The Solar System Beyond Neptune |arxiv=astro-ph/0702538|pages=161 |year=2007|bibcode=2008ssbn.book..161S}}</ref> The first centaur discovered, [[2060 Chiron]], has also been classified as comet (95P) because it develops a coma just as comets do when they approach the Sun.<ref>{{cite web |year=1995 |author=Patrick Vanouplines |title=Chiron biography |work=Vrije Universitiet Brussel |url=http://www.vub.ac.be/STER/www.astro/chibio.htm |accessdate=2006-06-23}}</ref>

==Comets==
{{Main|Comet}}
[[File:Comet c1995o1.jpg|upright|thumb|[[Comet Hale–Bopp]]]]

Comets are small Solar System bodies,<ref group=lower-alpha name=footnoteB /> typically only a few kilometres across, composed largely of volatile ices. They have highly eccentric orbits, generally a perihelion within the orbits of the inner planets and an aphelion far beyond Pluto. When a comet enters the inner Solar System, its proximity to the Sun causes its icy surface to [[sublimation (chemistry)|sublimate]] and [[ion]]ise, creating a [[coma (cometary)|coma]]: a long tail of gas and dust often visible to the naked eye.

Short-period comets have orbits lasting less than two hundred years. Long-period comets have orbits lasting thousands of years. Short-period comets are believed to originate in the Kuiper belt, whereas long-period comets, such as [[Comet Hale–Bopp|Hale–Bopp]], are believed to originate in the [[Oort cloud]]. Many comet groups, such as the [[Kreutz Sungrazers]], formed from the breakup of a single parent.<ref>{{cite journal |author=Sekanina, Zdeněk |year=2001 |title=Kreutz sungrazers: the ultimate case of cometary fragmentation and disintegration? |volume=89 |journal=Publications of the Astronomical Institute of the Academy of Sciences of the Czech Republic |pages=78–93 |bibcode=2001PAICz..89...78S}}</ref> Some comets with [[hyperbolic trajectory|hyperbolic]] orbits may originate outside the Solar System, but determining their precise orbits is difficult.<ref name="hyperbolic">{{cite journal |last=Królikowska |first=M. |year=2001 |title=A study of the original orbits of ''hyperbolic'' comets |journal=[[Astronomy & Astrophysics]] |volume=376 |issue=1 |pages=316–324 |doi=10.1051/0004-6361:20010945 |bibcode=2001A&A...376..316K}}</ref> Old comets that have had most of their volatiles driven out by solar warming are often categorised as asteroids.<ref>{{cite journal |last1=Whipple |first1=Fred L. |title=The activities of comets related to their aging and origin |journal=[[Celestial Mechanics and Dynamical Astronomy]] |volume=54 |pages=1–11 |year=1992 |doi=10.1007/BF00049540 |bibcode=1992CeMDA..54....1W}}</ref>

==Trans-Neptunian region==
The area beyond Neptune, or the "[[trans-Neptunian object|trans-Neptunian region]]", is still [[Timeline of Solar System exploration|largely unexplored]]. It appears to consist overwhelmingly of small worlds (the largest having a diameter only a fifth that of Earth and a mass far smaller than that of the Moon) composed mainly of rock and ice. This region is sometimes known as the "outer Solar System", though others use that term to mean the region beyond the asteroid belt.

===Kuiper belt===
{{Main|Kuiper belt}}
[[File:Outersolarsystem objectpositions labels comp.png|left|thumb|200px|Plot of all Kuiper belt objects known in 2007, set against the four outer planets]]

The Kuiper belt is a great ring of debris similar to the asteroid belt, but consisting mainly of objects composed primarily of ice.<ref name=physical>{{cite book|title=Encyclopedia of the Solar System|editor=Lucy-Ann McFadden et al. |chapter=Kuiper Belt Objects: Physical Studies|author=Stephen C. Tegler|pages=605–620|year=2007}}</ref> It extends between 30 and 50&nbsp;AU from the Sun. Though it is estimated to contain anything from dozens to thousands of dwarf planets, it is composed mainly of small Solar System bodies. Many of the larger Kuiper belt objects, such as [[50000 Quaoar|Quaoar]], [[20000 Varuna|Varuna]], and [[90482 Orcus|Orcus]], may prove to be dwarf planets with further data. There are estimated to be over 100,000 Kuiper belt objects with a diameter greater than 50&nbsp;km, but the total mass of the Kuiper belt is thought to be only a tenth or even a hundredth the mass of Earth.<ref name="Delsanti-Beyond_The_Planets">{{cite web |year=2006 |author=Audrey Delsanti and David Jewitt |title=The Solar System Beyond The Planets |work=Institute for Astronomy, University of Hawaii |url=http://www.ifa.hawaii.edu/faculty/jewitt/papers/2006/DJ06.pdf |format=PDF |accessdate=2007-01-03|archiveurl = http://web.archive.org/web/20070129151907/http://www.ifa.hawaii.edu/faculty/jewitt/papers/2006/DJ06.pdf |archivedate = January 29, 2007|deadurl=yes}}</ref> Many Kuiper belt objects have multiple satellites,<ref>{{cite doi | 10.1086/501524 }}</ref> and most have orbits that take them outside the plane of the ecliptic.<ref name=trojan>{{cite journal | url=http://www.boulder.swri.edu/~buie/biblio/pub047.pdf| author=Chiang ''et al.'' | title=Resonance Occupation in the Kuiper Belt: Case Examples of the 5:2 and Trojan Resonances | journal=[[The Astronomical Journal]] | volume=126 | issue=1 | pages=430–443 | year=2003 | doi=10.1086/375207 | accessdate=2009-08-15 | last2=Jordan | first2=A. B. | last3=Millis | first3=R. L. | last4=Buie | first4=M. W. | last5=Wasserman | first5=L. H. | last6=Elliot | first6=J. L. | last7=Kern | first7=S. D. | last8=Trilling | first8=D. E. | last9=Meech | first9=K. J. |displayauthors=9| bibcode=2003AJ....126..430C | first10=R. M.}}</ref>

The Kuiper belt can be roughly divided into the "[[Classical Kuiper belt object|classical]]" belt and the [[Resonant trans-Neptunian object|resonances]].<ref name=physical/> Resonances are orbits linked to that of Neptune (e.g. twice for every three Neptune orbits, or once for every two). The first resonance begins within the orbit of Neptune itself. The classical belt consists of objects having no resonance with Neptune, and extends from roughly 39.4&nbsp;AU to 47.7&nbsp;AU.<ref>{{cite journal |year=2005 |author=M. W. Buie, R. L. Millis, L. H. Wasserman, J. L. Elliot, S. D. Kern, K. B. Clancy, E. I. Chiang, A. B. Jordan, K. J. Meech, R. M. Wagner, D. E. Trilling |title=Procedures, Resources and Selected Results of the Deep Ecliptic Survey |journal=[[Earth, Moon, and Planets]] |volume=92 |issue=1 |pages=113 |arxiv=astro-ph/0309251 |bibcode=2003EM&P...92..113B |doi=10.1023/B:MOON.0000031930.13823.be}}</ref> Members of the classical Kuiper belt are classified as [[Classical Kuiper belt object|cubewanos]], after the first of their kind to be discovered, {{mpl|(15760) 1992 QB|1}}, and are still in near primordial, low-eccentricity orbits.<ref>{{cite web |url=http://sait.oat.ts.astro.it/MSAIS/3/PDF/20.pdf |format=PDF |title=Beyond Neptune, the new frontier of the Solar System |author=E. Dotto1, M. A. Barucci2, and M. Fulchignoni |accessdate=2006-12-26 |date=2006-08-24}}</ref>

====Pluto and Charon====
{{TNO imagemap}}
The dwarf planet [[Pluto]] (39&nbsp;AU average) is the largest known object in the Kuiper belt. When discovered in 1930, it was considered to be the ninth planet; this changed in 2006 with the adoption of a formal [[definition of planet]]. Pluto has a relatively eccentric orbit inclined 17 degrees to the ecliptic plane and ranging from 29.7&nbsp;AU from the Sun at perihelion (within the orbit of Neptune) to 49.5&nbsp;AU at aphelion.

[[Charon (moon)|Charon]], Pluto's largest moon, is sometimes described as part of a [[binary system (astronomy)|binary system]] with Pluto, as the two bodies orbit a [[Earth-Moon barycenter|barycentre]] of gravity above their surfaces (i.e. they appear to "orbit each other"). Beyond Charon, four much smaller moons, [[Styx (moon)|Styx]], [[Nix (moon)|Nix]], [[Kerberos (moon)|Kerberos]], and [[Hydra (moon)|Hydra]], are known to orbit within the system.

Pluto has a 3:2 [[orbital resonance|resonance]] with Neptune, meaning that Pluto orbits twice round the Sun for every three Neptunian orbits. Kuiper belt objects whose orbits share this resonance are called [[plutino]]s.<ref name="Fajans_et_al_2001">{{Cite journal |last=Fajans |first=J. |coauthors=L. Frièdland |date=October 2001 |title=Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators |journal=[[American Journal of Physics]] |volume=69 |issue=10 |pages=1096–1102 |doi=10.1119/1.1389278 |url=http://ist-socrates.berkeley.edu/~fajans/pub/pdffiles/AutoPendAJP.pdf|accessdate=2006-12-26}}</ref>

====Makemake and Haumea====
[[Makemake (dwarf planet)|Makemake]] (45.79&nbsp;AU average), although smaller than Pluto, is the largest known object in the [[Classical Kuiper belt object|''classical'' Kuiper belt]] (that is, it is not in a confirmed [[Resonant trans-Neptunian object|resonance]] with Neptune). Makemake is the brightest object in the Kuiper belt after Pluto. It was named and designated a dwarf planet in 2008.<ref name=name/> Its orbit is far more inclined than Pluto's, at 29°.<ref name=Buie136472>{{cite web
|author=Marc W. Buie
|date=2008-04-05
|title=Orbit Fit and Astrometric record for 136472
|publisher=SwRI (Space Science Department)
|url=http://www.boulder.swri.edu/~buie/kbo/astrom/136472.html
|accessdate=2012-07-15
|authorlink=Marc W. Buie}}</ref>

[[Haumea (dwarf planet)|Haumea]] (43.13&nbsp;AU average) is in an orbit similar to Makemake except that it is caught in a 7:12 orbital resonance with Neptune.<ref name="brownlargest">{{cite web
| title = The largest Kuiper belt objects
| author = Michael E. Brown
| work = CalTech
| url = http://www.gps.caltech.edu/~mbrown/papers/ps/kbochap.pdf
| format = PDF
| accessdate = 2012-07-15}}</ref> It is about the same size as Makemake and has two natural satellites. A rapid, 3.9-hour rotation gives it a flattened and elongated shape. It was named and designated a dwarf planet in 2008.<ref name="iaunews">{{cite web
| title = News Release&nbsp;– IAU0807: IAU names fifth dwarf planet Haumea
| work = International Astronomical Union
| date = 2008-09-17
| url = http://www.iau.org/public_press/news/release/iau0807/
| accessdate = 2012-07-15}}</ref>

===Scattered disc===
{{Main|Scattered disc}}

The scattered disc, which overlaps the Kuiper belt but extends much further outwards, is thought to be the source of short-period comets. Scattered disc objects are believed to have been ejected into erratic orbits by the gravitational influence of [[Formation and evolution of the Solar System#Planetary migration|Neptune's early outward migration]]. Most scattered disc objects (SDOs) have perihelia within the Kuiper belt but aphelia far beyond it (some have aphelia farther than 150&nbsp;AU from the Sun). SDOs' orbits are also highly inclined to the ecliptic plane and are often almost perpendicular to it. Some astronomers consider the scattered disc to be merely another region of the Kuiper belt and describe scattered disc objects as "scattered Kuiper belt objects".<ref>{{cite web |year=2005 |author=David Jewitt |title=The 1000 km Scale KBOs |work=University of Hawaii |url=http://www2.ess.ucla.edu/~jewitt/kb/big_kbo.html |accessdate=2006-07-16}}</ref> Some astronomers also classify centaurs as inward-scattered Kuiper belt objects along with the outward-scattered residents of the scattered disc.<ref>{{cite web |url=http://www.minorplanetcenter.org/iau/lists/Centaurs.html |title=List Of Centaurs and Scattered-Disk Objects |work=IAU: Minor Planet Center |accessdate=2007-04-02}}</ref>

====Eris====
[[Eris (dwarf planet)|Eris]] (68&nbsp;AU average) is the largest known scattered disc object, and caused a debate about what constitutes a planet, because it is 25% more massive than Pluto<ref name="Brown Schaller 2007">{{cite doi | 10.1126/science.1139415 }}</ref> and about the same diameter. It is the most massive of the known dwarf planets. It has one known moon, [[Dysnomia (moon)|Dysnomia]]. Like Pluto, its orbit is highly eccentric, with a [[perihelion]] of 38.2 AU (roughly Pluto's distance from the Sun) and an [[aphelion]] of 97.6 AU, and steeply inclined to the ecliptic plane.

==Regions més llunyanes==
The point at which the Solar System ends and interstellar space begins is not precisely defined because its outer boundaries are shaped by two separate forces: the solar wind and the Sun's gravity. The outer limit of the solar wind's influence is roughly four times Pluto's distance from the Sun; this ''[[Heliopause (astronomy)|heliopause]]'' is considered the beginning of the [[interstellar medium]].<ref name="Voyager" /> The Sun's [[Hill sphere]], the effective range of its gravitational dominance, is believed to extend up to a thousand times farther.<ref name=Littmann>{{cite book|last=Littmann|first=Mark|title=Planets Beyond: Discovering the Outer Solar System|year=2004|pages=162–163|publisher=Courier Dover Publications|isbn=978-0-486-43602-9}}</ref>

===Heliopausa===
[[File:IBEX all sky map.jpg|thumb|left|[[Energetic neutral atoms]] map of heliosheath and heliopause by [[IBEX]]. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio.]]
<!-- [[File:NewHeliopause 558121.jpg|thumb|300px|NASA image of the heliosheath and heliopause]] -->

The heliosphere is divided into two separate regions. The solar wind travels at roughly 400&nbsp;km/s until it collides with the [[interstellar wind]]; the flow of plasma in the [[interstellar medium]]. The collision occurs at the [[termination shock]], which is roughly 80–100 AU from the Sun upwind of the interstellar medium and roughly 200 AU from the Sun downwind.<ref name=fahr /> Here the wind slows dramatically, condenses, and becomes more turbulent,<ref name=fahr /> forming a great oval structure known as the [[heliosheath]]. This structure is believed to look and behave very much like a comet's tail, extending outward for a further 40 AU on the upwind side but tailing many times that distance downwind; evidence from the Cassini and [[Interstellar Boundary Explorer]] spacecraft has suggested that it is forced into a bubble shape by the constraining action of the interstellar magnetic field.<ref>{{cite web|title=Cassini's Big Sky: The View from the Center of Our Solar System|author=NASA/JPL|url=http://www.jpl.nasa.gov/news/features.cfm?feature=2370&msource=F20091119&tr=y&auid=5615216|year=2009|accessdate=2009-12-20}}</ref> The outer boundary of the heliosphere, the [[Heliopause (astronomy)|heliopause]], is the point at which the solar wind finally terminates and is the beginning of interstellar space.<ref name="Voyager">{{cite web |url=http://www.nasa.gov/vision/universe/solarsystem/voyager_agu.html |title=Voyager Enters Solar System's Final Frontier |work=NASA |accessdate=2007-04-02}}</ref> Both ''[[Voyager 1]]'' and ''[[Voyager 2]]'' are reported to have passed the termination shock and entered the heliosheath, at 94 and 84 AU from the Sun, respectively.<ref>{{cite journal | doi=10.1126/science.1117684 |date=September 2005 | author=Stone, E. C.; Cummings, A. C.; McDonald, F. B.; Heikkila, B. C.; Lal, N.; Webber, W. R. | title=Voyager 1 explores the termination shock region and the heliosheath beyond | volume=309 | issue=5743 | pages=2017–20 | pmid=16179468 | journal=[[Science (journal)|Science]] | bibcode=2005Sci...309.2017S}}</ref><ref>{{cite journal | doi=10.1038/nature07022 |date=July 2008 | author=Stone, E. C.; Cummings, A. C.; McDonald, F. B.; Heikkila, B. C.; Lal, N.; Webber, W. R. | title=An asymmetric solar wind termination shock | volume=454 | issue=7200 | pages=71–4 | pmid=18596802 | journal=[[Nature (journal)|Nature]] }}</ref> ''Voyager 1'' is also reported to have reached the heliopause.<ref name="NASA-20130912">{{cite web |last1=Cook |first1=Jia-Rui C. |last2=Agle |first2=D. C. |last3=Brown |first3=Dwayne |title=NASA Spacecraft Embarks on Historic Journey Into Interstellar Space |url=http://www.nasa.gov/mission_pages/voyager/voyager20130912.html |work=[[NASA]] |date=12 September 2013 |accessdate=12 September 2013}}</ref>

The shape and form of the outer edge of the heliosphere is likely affected by the [[fluid dynamics]] of interactions with the interstellar medium<ref name="fahr">{{cite journal |year=2000 |title=A 5-fluid hydrodynamic approach to model the Solar System-interstellar medium interaction |journal=[[Astronomy & Astrophysics]] | volume=357 | page=268 |url=http://aa.springer.de/papers/0357001/2300268.pdf | format=PDF | bibcode=2000A&A...357..268F }} See Figures 1 and 2.</ref> as well as solar magnetic fields prevailing to the south, e.g. it is bluntly shaped with the northern hemisphere extending 9 AU farther than the southern hemisphere. Beyond the heliopause, at around 230 AU, lies the [[bow shock]], a plasma "wake" left by the Sun as it travels through the [[Milky Way]].<ref>{{cite web | date=June 24, 2002 |author=P. C. Frisch (University of Chicago) |title=The Sun's Heliosphere & Heliopause | work=[[Astronomy Picture of the Day]] | url=http://antwrp.gsfc.nasa.gov/apod/ap020624.html |accessdate=2006-06-23}}</ref>

Due to a lack of data, the conditions in local interstellar space are not known for certain. It is expected that [[NASA]]'s [[Voyager program|Voyager spacecraft]], as they pass the heliopause, will transmit valuable data on radiation levels and solar wind back to Earth.<ref>{{cite web | year=2007 | title=Voyager: Interstellar Mission | work=NASA Jet Propulsion Laboratory | url=http://voyager.jpl.nasa.gov/mission/interstellar.html |accessdate=2008-05-08}}</ref> How well the heliosphere shields the Solar System from cosmic rays is poorly understood. A NASA-funded team has developed a concept of a "Vision Mission" dedicated to sending a probe to the heliosphere.<ref>{{cite conference |title=Innovative Interstellar Explorer |author=R. L. McNutt, Jr. et al. | booktitle= Physics of the Inner Heliosheath: Voyager Observations, Theory, and Future Prospects |series=[[AIP Conference Proceedings]] |volume=858 |pages=341–347 |year=2006 |bibcode=2006AIPC..858..341M |doi=10.1063/1.2359348}}</ref><ref>{{cite web |title=Interstellar space, and step on it! |work=New Scientist |url=http://space.newscientist.com/article/mg19325850.900-interstellar-space-and-step-on-it.html |date=2007-01-05 |accessdate=2007-02-05 | author=Anderson, Mark}}</ref>

===Objectes separats===
{{main|Objecte separat}}
[[90377 Sedna]] (520 AU average) is a large, reddish object with a gigantic, highly elliptical orbit that takes it from about 76&nbsp;AU at perihelion to 940&nbsp;AU at aphelion and takes 11,400 years to complete. [[Michael E. Brown|Mike Brown]], who discovered the object in 2003, asserts that it cannot be part of the [[scattered disc]] or the Kuiper belt as its perihelion is too distant to have been affected by Neptune's migration. He and other astronomers consider it to be the first in an entirely new population, sometimes termed "distant detached objects" (DDOs), which also may include the object {{mpl-|148209|2000 CR|105}}, which has a perihelion of 45&nbsp;AU, an aphelion of 415&nbsp;AU, and an orbital period of 3,420 years.<ref>{{cite web |year=2004 |author=David Jewitt |title=Sedna – 2003 VB<sub>12</sub> |work=University of Hawaii |url=http://www2.ess.ucla.edu/~jewitt/kb/sedna.html|accessdate=2006-06-23}}</ref> Brown terms this population the "inner Oort cloud" because it may have formed through a similar process, although it is far closer to the Sun.<ref>{{cite web |title=Sedna |author=Mike Brown |year=2004 |url=http://www.gps.caltech.edu/~mbrown/sedna/ |work=CalTech |accessdate=2007-05-02}}</ref> Sedna is very likely a dwarf planet, though its shape has yet to be determined. The second unequivocally detached object, with a perihelion farther than Sedna's at roughly 81 AU, is {{mpl|2012 VP|113}}, discovered in 2012. Its aphelion is only half that of Sedna's, at 400–500 AU.<ref name="jpldata 2012 VP113">
{{cite web
|date=2013-10-30 last obs
|title=JPL Small-Body Database Browser: (2012 VP113)
|url=http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2012VP113
|publisher=Jet Propulsion Laboratory
|accessdate=2014-03-26
}}
</ref><ref name="Physorg">
{{cite web
| url=http://phys.org/news/2014-03-edge-solar.html
| title=A new object at the edge of our Solar System discovered
| work=Physorg.com
| date=26 March 2014
}}
</ref>

===Núvol d'Oort===
{{Main|Oort cloud}}
[[File:Kuiper oort.jpg|thumb|250px|An artist's rendering of the Oort cloud, the Hills cloud, and the Kuiper belt (inset)]]

The Oort cloud is a hypothetical spherical cloud of up to a trillion icy objects that is believed to be the source for all long-period comets and to surround the Solar System at roughly 50,000&nbsp;AU (around 1&nbsp;[[light-year]] (ly)), and possibly to as far as 100,000&nbsp;AU (1.87&nbsp;ly). It is believed to be composed of comets that were ejected from the inner Solar System by gravitational interactions with the outer planets. Oort cloud objects move very slowly, and can be perturbed by infrequent events such as collisions, the gravitational effects of a passing star, or the [[galactic tide]], the [[tidal force]] exerted by the [[Milky Way]].<ref>{{cite web |year=2001 |author=Stern SA, Weissman PR. |title=Rapid collisional evolution of comets during the formation of the Oort cloud. |work=Space Studies Department, Southwest Research Institute, Boulder, Colorado| url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11214311&dopt=Citation |accessdate=2006-11-19}}</ref><ref>{{cite web |year=2006 |author=Bill Arnett |title=The Kuiper Belt and the Oort Cloud |work=nineplanets.org |url=http://www.nineplanets.org/kboc.html |accessdate=2006-06-23}}</ref>

===Límits===
{{See also|Vulcanoid asteroid|Planets beyond Neptune|Nemesis (hypothetical star)|Tyche (hypothetical planet)}}

Much of the Solar System is still unknown. The Sun's gravitational field is estimated to dominate the gravitational forces of [[List of nearest stars|surrounding stars]] out to about two light years (125,000 AU). Lower estimates for the radius of the Oort cloud, by contrast, do not place it farther than 50,000 AU.<ref>{{cite book |title=The Solar System: Third edition |author=T. Encrenaz, JP. Bibring, M. Blanc, MA. Barucci, F. Roques, PH. Zarka |publisher=Springer |year=2004 |page=1}}</ref> Despite discoveries such as Sedna, the region between the Kuiper belt and the Oort cloud, an area tens of thousands of AU in radius, is still virtually unmapped. There are also ongoing studies of the region between Mercury and the Sun.<ref>{{cite journal |year=2004 |pages=312–315 |volume=148 |journal=[[Icarus (journal)|Icarus]] |author=Durda D. D.; Stern S. A.; Colwell W. B.; Parker J. W.; Levison H. F.; Hassler D. M. |title=A New Observational Search for Vulcanoids in SOHO/LASCO Coronagraph Images |doi=10.1006/icar.2000.6520 |bibcode=2000Icar..148..312D}}</ref> Objects may yet be discovered in the Solar System's uncharted regions.

In November 2012 NASA announced that as [[Voyager 1]] approached the transition zone to the outer limit of the Solar System, its instruments detected a sharp intensification of the magnetic field. No change in the direction of the magnetic field had occurred, which NASA scientists then interpreted to indicate that Voyager 1 had not yet left the Solar System.<ref>{{cite web |url=http://www.nasa.gov/mission_pages/voyager/voyager20121203.html |title=NASA Voyager 1 Encounters New Region in Deep Space |last1=Greicius |first1=Tony |last2= |first2= |date=3 December 2012 |work= |publisher=NASA |accessdate=26 January 2013}}</ref>

==Context galàctic==
{{imageframe|width=300|caption=Position of the Solar System within the Milky Way|content=
{{Superimpose
| base = Milky Way Arms ssc2008-10.svg
| base_width = 300px
| base_alt = Position of the Solar System within the Milky Way
| base_caption = Position of the Solar System within the Milky Way
| float = Yellow Arrow Down.png
| float_width = 16px
| x = 142
| y = 55
}} }}

The Solar System is located in the [[Milky Way]], a [[barred spiral galaxy]] with a diameter of about 100,000 [[light-year]]s containing about 200 billion stars.<ref name="fn9">
{{cite press
|last=English |first=J.
|title=Exposing the Stuff Between the Stars
|url = http://www.ras.ucalgary.ca/CGPS/press/aas00/pr/pr_14012000/pr_14012000map1.html
|publisher=Hubble News Desk
|year=2000
|accessdate = 2007-05-10
}}</ref> The Sun resides in one of the Milky Way's outer spiral arms, known as the [[Orion–Cygnus Arm]] or Local Spur.<ref>{{cite journal |title=Three Dimensional Structure of the Milky Way Disk |author=R. Drimmel, D. N. Spergel |year=2001 |pages=181–202 |volume=556 |doi=10.1086/321556 |journal=[[Astrophysical Journal]] |arxiv=astro-ph/0101259 |bibcode=2001ApJ...556..181D}}</ref> The Sun lies between 25,000 and 28,000 light years from the [[Galactic Centre]],<ref name="distance2">
{{cite journal
|last=Eisenhauer |first=F.
|coauthors=et al.
|title=A Geometric Determination of the Distance to the Galactic Center
|journal=[[Astrophysical Journal]]
|volume=597 |issue=2 |pages=L121–L124
|year=2003
|doi=10.1086/380188
|bibcode=2003ApJ...597L.121E
}}</ref> and its speed within the galaxy is about 220 [[metre per second|kilometres per second]] (140&nbsp;mi/s), so that it completes one revolution every 225–250 million years. This revolution is known as the Solar System's [[galactic year]].<ref>{{cite web |title=Period of the Sun's Orbit around the Galaxy (Cosmic Year) |first=Stacy |last=Leong |url=http://hypertextbook.com/facts/2002/StacyLeong.shtml |year=2002 |work=The Physics Factbook |accessdate=2007-04-02}}</ref> The [[solar apex]], the direction of the Sun's path through interstellar space, is near the constellation [[Hercules (constellation)|Hercules]] in the direction of the current location of the bright star [[Vega]].<ref>{{cite web |year=2003 |author=C. Barbieri |title=Elementi di Astronomia e Astrofisica per il Corso di Ingegneria Aerospaziale V settimana |work=IdealStars.com |url=http://dipastro.pd.astro.it/planets/barbieri/Lezioni-AstroAstrofIng04_05-Prima-Settimana.ppt |accessdate=2007-02-12}}</ref> The plane of the ecliptic lies at an angle of about 60° to the [[galactic plane]].{{Refn|If ψ is the angle between the [[Ecliptic pole|north pole of the ecliptic]] and the north [[galactic pole]] then:
:<math>\cos\psi=\cos(\beta_g)\cos(\beta_e)\cos(\alpha_g-\alpha_e)+\sin(\beta_g)\sin(\beta_e)</math>,
where <math>\beta_g=</math>27° 07′ 42.01″ and <math>\alpha_g=</math>12h 51m 26.282 are the declination and right ascension of the north galactic pole,<ref>{{cite journal | last=Reid| first=M.J. | coauthors=Brunthaler, A. | title=The Proper Motion of Sagittarius A* | journal=[[The Astrophysical Journal]] | volume=616 | issue=2 | page=883 | doi=10.1086/424960 | month=2004 | year=2004 | bibcode=2004ApJ...616..872R}}</ref> whereas <math>\beta_e=</math>66° 33′ 38.6″ and <math>\alpha_e=</math>18h 0m 00 are those for the north pole of the ecliptic. (Both pairs of coordinates are for [[J2000]] epoch.) The result of the calculation is 60.19°.|group=lower-alpha}}

The Solar System's location in the galaxy is a factor in the [[evolution]] of [[life]] on Earth. Its orbit is close to circular, and orbits near the Sun are at roughly the same speed as that of the spiral arms. Therefore, the Sun passes through arms only rarely. Because spiral arms are home to a far larger concentration of [[supernova]]e, gravitational instabilities, and radiation that could disrupt the Solar System, this has given Earth long periods of stability for life to evolve.<ref name="astrobiology">{{cite web |year=2001 |author=Leslie Mullen |title=Galactic Habitable Zones |work=Astrobiology Magazine |url=http://www.astrobio.net/news/modules.php?op=modload&name=News&file=article&sid=139 |accessdate=2006-06-23}}</ref> The Solar System also lies well outside the star-crowded environs of the galactic centre. Near the centre, gravitational tugs from nearby stars could perturb bodies in the [[Oort Cloud]] and send many comets into the inner Solar System, producing collisions with potentially catastrophic implications for life on [[Earth]]. The intense radiation of the galactic centre could also interfere with the development of complex life.<ref name=astrobiology/> Even at the Solar System's current location, some scientists have hypothesised that recent [[supernovae]] may have adversely affected life in the last 35,000 years by flinging pieces of expelled stellar core towards the Sun as radioactive dust grains and larger, comet-like bodies.<ref>{{cite web |year=2005 |author=|title=Supernova Explosion May Have Caused Mammoth Extinction |work=Physorg.com |url=http://www.physorg.com/news6734.html |accessdate=2007-02-02}}</ref>

===Veïnatge===
[[File:Local Interstellar Clouds with motion arrows.jpg|thumb|Beyond the heliosphere is the interstellar medium, consisting of various clouds of gases. (see [[Local Interstellar Cloud]])]]
The Solar System is currently located in the [[Local Interstellar Cloud]] or Local Fluff. It is thought to be near the neighbouring [[G-Cloud]], but it is unknown if the Solar System is embedded in the Local Interstellar Cloud, or if it is in the region where the Local Interstellar Cloud and G-Cloud are interacting.<ref>[http://interstellar.jpl.nasa.gov/interstellar/probe/introduction/neighborhood.html Our Local Galactic Neighborhood], NASA, 05-06-2013</ref><ref>[http://www.centauri-dreams.org/?p=14203 Into the Interstellar Void], Centauri Dreams, 05-06-2013</ref> The Local Interstellar Cloud is an area of denser cloud in an otherwise sparse region known as the [[Local Bubble]], an hourglass-shaped cavity in the [[interstellar medium]] roughly 300 light years across. The bubble is suffused with high-temperature plasma that suggests it is the product of several recent supernovae.<ref>{{cite web |title=Near-Earth Supernovas |work=NASA |url=http://science.nasa.gov/headlines/y2003/06jan_bubble.htm |accessdate=2006-07-23}}</ref>

There are relatively few [[List of nearest stars|stars within ten light years]] (95 trillion km, or 60 trillion mi) of the Sun. The closest is the triple star system [[Alpha Centauri]], which is about 4.4 light years away. Alpha Centauri A and B are a closely tied pair of Sun-like stars, whereas the small [[red dwarf]] Alpha Centauri C (also known as [[Proxima Centauri]]) orbits the pair at a distance of 0.2 light years. The stars next closest to the Sun are the red dwarfs [[Barnard's Star]] (at 5.9 light years), [[Wolf 359]] (7.8 light years), and [[Lalande 21185]] (8.3 light years). The largest star within ten light years is [[Sirius]], a bright [[main sequence|main-sequence]] star roughly twice the Sun's mass and orbited by a [[white dwarf]] called Sirius B. It lies 8.6 light years away. The remaining systems within ten light years are the binary red-dwarf system [[Luyten 726-8]] (8.7 light years) and the solitary red dwarf [[Ross 154]] (9.7 light years).<ref>{{cite web |title=Stars within 10 light years |url=http://www.solstation.com/stars/s10ly.htm|work=SolStation |accessdate=2007-04-02}}</ref> The Solar System's closest solitary Sun-like star is [[Tau Ceti]], which lies 11.9 light years away. It has roughly 80% of the Sun's mass but only 60% of its luminosity.<ref>{{cite web |title=Tau Ceti |url=http://www.solstation.com/stars/tau-ceti.htm |work=SolStation |accessdate=2007-04-02}}</ref> The closest known [[extrasolar planet]] to the Sun lies around Alpha Centauri B. Its one confirmed planet, [[Alpha Centauri Bb]], is at least 1.1 times Earth's mass and orbits its star every 3.236 days.<ref>{{cite doi | 10.1038/nature11572}}</ref>

{{wide image|Earth's Location in the Universe (JPEG).jpg|2000px|A diagram of Earth's location in the [[observable Universe]]. (''[[:File:Earth's Location in the Universe SMALLER (JPEG).jpg|Click here for an alternate image]].'')}}

==Resum visual==
This section is a sampling of Solar System bodies, selected for size and quality of imagery, and sorted by volume. Some omitted objects are larger than the ones included here, notably [[Pluto]] and [[Eris (dwarf planet)|Eris]], because these have not been imaged in high quality.
{{SolarSummary}}


== Regions del sistema solar ==
== Regions del sistema solar ==

Revisió del 21:42, 28 març 2014

Aquest article tracta sobre el Sol i el seu sistema planetari. Vegeu-ne altres significats a «Sistema planetari».
Sistema solar
Els planetes i els planetes nans del sistema solar amb mides de mostra a escala, però amb distàncies reduïdes.
Els planetes i els planetes nans del sistema solar amb mides de mostra a escala, però amb distàncies reduïdes.
Edat4,568 bilions d'anys
UbicacióNúvol interestel·lar local, Bombolla local, Braç d'Orió, Via Làctia
Massa del sistema1,0014 masses solars
Estrella més properaPròxima del Centaure (4,22 al), sistema d'Alfa del Centaure (4,37 al)
Sistema planetari més proper conegutSistema d'Alfa del Centaure (4,37 al)
Sistema planetari
Semi-eix major exterior (Neptú)30,10 UA (4,503 bilions de km)
Distància al límit exterior50 UA
Nombre d'estrelles1
Sol
Nombre de planetes8
Mercuri, Venus, Terra, Mart, Júpiter, Saturn, Urà, Neptú
Nombre de planetes nans conegutsPossiblement diversos centenars.[1]
5 (Ceres, Plutó, Haumea, Makemake i Eris) actualment estan reconeguts per la IAU
Nombre de satèl·lits naturals coneguts422 (173 de planetes[2] i 249 de planetes menors[3])
Nombre de planetes menors coneguts628,057 (as of 2013-12-12)[4]
Nombre de cometes coneguts3.244 (fins el 2013-12-12)[4]
Nombre de satèl·lits rodons coneguts19
Òrbita al voltant del centre galàctic
Inclinació del pla invariable al pla galàctic60,19° (eclíptica)
Distància al Centre Galàctic27.000±1.000 al
Velocitat orbital220 km/s
Període orbital225–250 Ma
Propietats relacionades amb l'estrella
Tipus espectralG2V
Línia de congelament≈5 UA[5]
Distància a la heliopausa≈120 UA
Radi de l'esfera de Hill≈1–2 al

El sistema solar[a] és el Sol i els objectes que l'orbiten al voltant. Per tant, és un sistema planetari de vuit planetes[b] i diversos cossos secundaris, planetes nans i objectes menors del sistema solar que orbiten el sol directament ,[c] com també els satèl·lits (llunes) que orbiten molts planetes i objectes més petits. El sistema solar es va formar fa 4,6 bilions d'anys a partir del col·lapse gravitatori d'un núvol molecular gegant. La gran majoria de la massa del sistema és al sol, amb la major part de la massa restant continguda a Júpiter. Els quatre planetes interns més petits, Mercuri, Venus, Terra i Mart, també anomenats els planetes tel·lúrics, es componen sobretot de roca i metall. Els quatre planetes exteriors, anomenats els gegants gasosos, són substancialment més massius que els terrestres. Els dos més grans, Júpiter i Saturn, estan compostos principalment d'hidrogen i heli, els dos planetes més externs, Urà i Neptú, es componen en gran part de les substàncies amb punts de fusió relativament alts (en comparació amb l'hidrogen i l'heli), anomenats gels, com ara aigua, amoníac i metà, i es refereixen sovint per separat com a "gegants de gel". Tots els planetes tenen òrbites gairebé circulars que es troben dins d'un disc gairebé pla anomenat el pla eclíptic.

El sistema solar també conté regions poblades d'objectes més petits.[c] El cinturó d'asteroides, que es troba entre Mart i Júpiter, majoritàriament conté objectes compostos, com els planetes terrestres, de roca i metall. Més enllà de l'òrbita de Neptú, hi ha el cinturó de Kuiper i el disc dispers, vinculats amb poblacions d'objectes transneptunians compostos principalment de gel. Dins d'aquestes poblacions són diverses desenes a més de deu mil objectes que poden ser prou grans com per haver estat arrodonits per la seva pròpia gravetat.[10] Aquests objectes es denominen planetes nans. Entre els planetes nans identificats s'inclouen l'asteroide Ceres i els objectes transneptunians Plutó i Eris.[c] A més d'aquestes dues regions, existeixen altres poblacions de petits cossos incloent cometes, centaures i la pols interplanetària que viatgen lliurement entre les regions. Sis dels planetes, almenys tres dels planetes nans, i molts dels cossos més petits estan en òrbita amb satèl·lits naturals,[d] generalment denominats "llunes" de la Lluna de la Terra. Cadascun dels planetes externs és envoltat per anells planetaris de pols i altres objectes petits.

El vent solar, un flux de plasma que ve del sol, crea una bombolla en el medi interestel·lar coneguda com la helioesfera, que s'estén fins al límit del disc dispers. El núvol d'Oort, que es creu que és la font de cometes de període llarg, també poden existir en una distància prop de mil vegades més lluny que l'heliosfera. La heliopausa és el punt en què la pressió del vent solar és igual a la pressió oposada del vent interestel·lar. El sistema solar es troba situat dins d'un dels braços exteriors de la Via Làctia, que conté aproximadament 200 bilions d'estrelles.

Visió artística del Sol, els planetes del sistema solar i les seves òrbites, el cinturó d'asteroides i un cometa. Les mides dels astres s'hi representen molt exagerades respecte a les seves distàncies.

Descobriment del sistema solar

El descobriment del sistema solar va començar en la més remota antiguitat. Totes les antigues civilitzacions tenien ja coneixement del Sol, la Lluna i els planetes, encara que llavors només se'n coneixien 5: Mercuri, Venus, Mart, Júpiter i Saturn. El nom de "planetes" els va ser donat pels antics grecs i significa "errants", ja que es desplaçaven pel firmament en trajectòries aparentment erràtiques. Es desconeix qui i quan els va observar per primera vegada. A la resta de punts brillants del firmament els anomenaven les estrelles "fixes", perquè sempre es trobaven a la mateixa posició les unes respecte de les altres. El coneixement que es creia que es tenia a l'antiguitat sobre la naturalesa de cada un d'aquests objectes era totalment incorrecte.

La Terra no es considerava planeta perquè es pensava que la Terra estava quieta al centre del món mentre tots els altres objectes del firmament, inclòs el Sol, giraven al seu voltant. Això és el que s'anomena model geocèntric del sistema solar. No obstant això, ja cap al 270 aC, el filòsof grec Aristarc de Samos va proposar que era la Terra la que girava al voltant del Sol, però la seva idea no va tenir gaire bona acollida. Uns anys més tard, Eratòstenes va calcular el diàmetre de la Terra amb força exactitud. El sistema geocèntric va ser perfeccionat per Ptolemeu cap a l'any 150 dC i des de llavors i fins al segle XVII va ser el sistema dominant a Europa.[11]

Al segle XVI, va tenir lloc el que es coneix com a Revolució Copernicana, que va tenir com a origen la publicació del llibre De Revolutionibus Orbium Coelestium de Nicolau Copèrnic el 1543. Copèrnic va proposar un model heliocèntric del sistema solar, on era el Sol i no la Terra el que es trobava al centre del món i tots els planetes, inclosa la Terra, giraven al seu voltant. La idea de Copèrnic va ser fortament rebutjada per l'Església Catòlica però amb el pas dels segles es va acabar imposant.[12]

L'any 1609, la invenció del telescopi va suposar un gran avanç tecnològic en el descobriment del sistema solar. Un any després, Galileo Galilei va enfocar el seu telescopi cap al cel i va descobrir quatre llunes que giraven al voltant de Júpiter. Això demostrava que no tots els cossos giren al voltant de la Terra i era un argument a favor de la teoria heliocèntrica. Entre el 1609 i el 1618, Johannes Kepler va formular les seves lleis del moviment planetari que descriuen les òrbites dels planetes al voltant del Sol. El 1687, Isaac Newton va descobrir la llei de la gravitació universal que explica la força que manté als planetes movent-se en òrbita al voltant del Sol i dona una raó de perquè els planetes es mouen tal com diuen les lleis de Kepler.

El 1781, William Herschel va descobrir un nou planeta, Urà. Era el primer planeta que es descobria des de l'antiguitat. El 1801, Giuseppe Piazzi va descobrir el primer i el més gran dels asteroides, (1) Ceres, entre les òrbites de Mart i Júpiter. En els anys següents es van descobrir molts altres asteroides, la majoria en òrbites semblants a Ceres formant el cinturó d'asteroides. El 1846, Johann Galle va descobrir Neptú, observant allà on els càlculs teòrics de Urbain Le Verrier i John Couch Adams deien que hi havia d'haver un nou planeta. Finalment, Clyde Tombaugh el 1930 va descobrir el novè planeta, Plutó.

En els últims anys, els descobriments en el sistema solar s'han centrat principalment en nous satèl·lits dels planetes gegants, nous asteroides i nous cometes. És destacable el descobriment, l'any 1992, de l'objecte (15760) 1992 QB1 més enllà de l'òrbita de Neptú, que va desencadenar el descobriment de molts altres objectes semblants, ara coneguts amb el nom d'objectes transneptunians. Aquests objectes es concentren principalment en la regió del cinturó de Kuiper. El més gran de tots ells és 2003 UB313, descobert l'any 2005. Aquest objecte és fins i tot més gran que Plutó i s'ha suggerit que podria ser el desè planeta del sistema solar.

Exploració del sistema solar

Des del començament de l'era espacial el 1957, la major part de l'exploració del sistema solar s'ha realitzat mitjançant missions espacials no tripulades, organitzades i executades per diferents agències espacials (bàsicament, l'estatunidenca NASA, el programa espacial soviètic i l'europea ESA). La primera nau espacial en posar-se sobre la superfície d'un altre cos del sistema solar va ser la sonda soviètica Luna 2 que va impactar contra la Lluna el 1959. Des de llavors, s'ha arribat a cossos cada vegada més distants, amb sondes aterrant a Venus el 1965, a Mart el 1976, a l'asteroide (433) Eros el 2001 i al satèl·lit de Saturn Tità el 2005. Fins ara, cap sonda s'ha posat sobre Mercuri però la Mariner 10 el va sobrevolar de prop el 1973.

La primera sonda a explorar els planetes exteriors va ser la Pioneer 10 que va sobrevolar Júpiter el 1973. La Pioneer 11 va ser la primera a visitar Saturn el 1979. Les sondes Voyager van realitzar un gran tour del sistema solar visitant Júpiter el 1979 i Saturn el 1980-1981. A més, la Voyager 2 va continuar el seu viatge passant a prop d'Urà el 1986 i de Neptú el 1989. Les sondes Voyager ara es troben molt més enllà de l'òrbita de Plutó i s'estan apropant a l'heliopausa que marca el límit exterior del sistema solar. Plutó és l'únic planeta que encara no ha estat visitat per cap sonda espacial. No obstant això, la sonda New Horizons, llançada el gener del 2006, està previst que arribi a Plutó cap al juliol del 2015 i després intentarà visitar algun objecte del cinturó de Kuiper encara per determinar.

A través d'aquestes missions no tripulades, s'han pogut obtenir fotografies d'alta resolució de la majoria de planetes i satèl·lits del sistema solar i d'algun asteroide i cometa també. També s'han realitzat anàlisis de les atmosferes dels cossos visitats i, en els casos de les sondes que s'han posat sobre la superfície, s'ha pogut estudiar en detall l'escorça de l'objecte. D'altra banda, l'exploració espacial tripulada només ha portat els humans fins a la Lluna, que va ser trepitjada per primera vegada pels astronautes de l'Apollo 11 el 1969. L'última missió lunar tripulada va ser la de l'Apollo 17 el 1972, però el recent descobriment d'aigua gelada en la regió del pol sud lunar ha fet augmentar les expectatives de retornar a la Lluna durant la pròxima dècada. D'altra banda, les missions tripulades a Mart han estat llargament anticipades per generacions d'entusiastes de l'espai. Actualment, l'Agència Espacial Europea, a través del Programa Aurora, i la NASA, a través de la Vision for Space Exploration, estan planejant missions tripulades a la Lluna i a Mart per a un futur no molt llunyà.

Composició i estructura del sistema solar

Aquestes imatges que il·lustren l'òrbita de Sedna, donen una bona idea de l'estructura del sistema solar. En el sentit de les agulles del rellotge començant a dalt a l'esquerra: el sistema solar interior, els planetes exteriors i el cinturó de Kuiper, l'òrbita de Sedna i el núvol d'Oort.
The orbits of the bodies in the Solar System to scale (clockwise from top left)

The principal component of the Solar System is the Sun, a G2 main-sequence star that contains 99.86% of the system's known mass and dominates it gravitationally.[13] The Sun's four largest orbiting bodies, the gas giants, account for 99% of the remaining mass, with Jupiter and Saturn together comprising more than 90%.[e]

Most large objects in orbit around the Sun lie near the plane of Earth's orbit, known as the ecliptic. The planets are very close to the ecliptic, whereas comets and Kuiper belt objects are frequently at significantly greater angles to it.[17][18] All the planets and most other objects orbit the Sun in the same direction that the Sun is rotating (counter-clockwise, as viewed from a long way above Earth's north pole).[19] There are exceptions, such as Halley's Comet.

The overall structure of the charted regions of the Solar System consists of the Sun, four relatively small inner planets surrounded by a belt of rocky asteroids, and four gas giants surrounded by the Kuiper belt of icy objects. Astronomers sometimes informally divide this structure into separate regions. The inner Solar System includes the four terrestrial planets and the asteroid belt. The outer Solar System is beyond the asteroids, including the four gas giants.[20] Since the discovery of the Kuiper belt, the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune.[21]

Most of the planets in the Solar System possess secondary systems of their own, being orbited by planetary objects called natural satellites, or moons (two of which are larger than the planet Mercury), and, in the case of the four gas giants, by planetary rings, thin bands of tiny particles that orbit them in unison. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent.

Kepler's laws of planetary motion describe the orbits of objects about the Sun. Following Kepler's laws, each object travels along an ellipse with the Sun at one focus. Objects closer to the Sun (with smaller semi-major axes) travel more quickly because they are more affected by the Sun's gravity. On an elliptical orbit, a body's distance from the Sun varies over the course of its year. A body's closest approach to the Sun is called its perihelion, whereas its most distant point from the Sun is called its aphelion. The orbits of the planets are nearly circular, but many comets, asteroids, and Kuiper belt objects follow highly elliptical orbits. The positions of the bodies in the Solar System can be predicted using numerical models.

Solar System showing the plane of Earth's orbit around the Sun in 3D. Mercury, Venus, Earth, and Mars are shown in both panels; the right panel also shows Jupiter making one full revolution with Saturn and Uranus making less than one full revolution.

Although the Sun dominates the system by mass, it accounts for only about 2% of the angular momentum[22] due to the differential rotation within the gaseous Sun.[23] The planets, dominated by Jupiter, account for most of the rest of the angular momentum due to the combination of their mass, orbit, and distance from the Sun, with a possibly significant contribution from comets.[22]

The Sun, which comprises nearly all the matter in the Solar System, is composed of roughly 98% hydrogen and helium.[24] Jupiter and Saturn, which comprise nearly all the remaining matter, possess atmospheres composed of roughly 99% of these elements.[25][26] A composition gradient exists in the Solar System, created by heat and light pressure from the Sun; those objects closer to the Sun, which are more affected by heat and light pressure, are composed of elements with high melting points. Objects farther from the Sun are composed largely of materials with lower melting points.[27] The boundary in the Solar System beyond which those volatile substances could condense is known as the frost line, and it lies at roughly 5 AU from the Sun.[5]

The objects of the inner Solar System are composed mostly of rock,[28] the collective name for compounds with high melting points, such as silicates, iron or nickel, that remained solid under almost all conditions in the protoplanetary nebula.[29] Jupiter and Saturn are composed mainly of gases, the astronomical term for materials with extremely low melting points and high vapour pressure such as molecular hydrogen, helium, and neon, which were always in the gaseous phase in the nebula.[29] Ices, like water, methane, ammonia, hydrogen sulfide and carbon dioxide,[28] have melting points up to a few hundred kelvins.[29] They can be found as ices, liquids, or gases in various places in the Solar System, whereas in the nebula they were either in the solid or gaseous phase.[29] Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (the so-called "ice giants") and the numerous small objects that lie beyond Neptune's orbit.[28][30] Together, gases and ices are referred to as volatiles.[31]

Cossos

En termes generals, el sistema solar està estructurat de la forma següent: al centre es troba el Sol, una estrella. Al voltant del Sol giren els 8 cossos majors, anomenats planetes, que són (ordenats del més proper al més llunyà al Sol): Mercuri, Venus, la Terra, Mart, Júpiter, Saturn, Urà i Neptú; Plutó des del 24 d'agost de 2006 ja no és considerat un planeta, sinó un planeta nan. També al voltant del Sol giren centenars de milers de cossos més petits que, segons la seva mida, composició i òrbita es classifiquen en planetes menors o planetoides, meteoroides i cometes. Els planetes menors es divideixen en dos grups: els asteroides i els objectes transneptunians, encara que a vegades quan es parla d'asteroides es fa referència a tot el conjunt de planetes menors. Els podem trobar escampats per tot el sistema solar però principalment es concentren en dues regions: el cinturó d'asteroides o cinturó principal, situat entre les òrbites de Mart i Júpiter i el cinturó de Kuiper, que es troba més enllà de l'òrbita de Neptú. Els meteoroides són petites roques de menys de 50 metres de diàmetre que estan escampades per tot el sistema solar. Els cometes són enormes blocs de gel i roca amb òrbites molt excèntriques. Es creu que podria existir una regió molt allunyada del Sol anomenada núvol d'Oort que seria la font d'on provenen els cometes.

Al voltant dels planetes giren els satèl·lits naturals o llunes. Cada planeta té un nombre diferent de satèl·lits. En total, se n'han descobert 162 i estan distribuïts així: a la Terra, 1 satèl·lit; a Mart, 2 satèl·lits; a Júpiter, 63 satèl·lits; a Saturn, 56 satèl·lits; a Urà, 27 satèl·lits; a Neptú, 13 satèl·lits i a Plutó, 3 satèl·lits. Mercuri i Venus no en tenen cap. Aquestes xifres estan contínuament subjectes a canvi a causa del descobriment de nous satèl·lits. Alguns asteroides tenen els seus propis satèl·lits naturals que s'anomenen satèl·lits asteroidals.

Òrbites

Tots els cossos del sistema solar estan lligats al Sol a través de la força de la gravetat segons la llei de la gravitació universal de Newton. El mateix passa entre els satèl·lits i els cossos als quals orbiten. La gravetat és una força atractiva la intensitat de la qual és més gran com més massa té un cos i s'afebleix a mesura que la distància entre els cossos augmenta. El Sol és, amb molta diferència, el cos amb més massa del sistema solar (un 99,86%), per això atrau a tots els altres cossos cap a ell. Al mateix temps, cada cos atrau el Sol cap a ell però aquest efecte és tan petit que el podem ignorar. Aquesta força d'atracció provoca que els cossos "caiguin" cap al Sol, però com que al mateix temps es mouen a gran velocitat en direcció perpendicular a la força d'atracció, per la 3ª llei de Newton apareix una força de reacció que s'equilibra amb la gravetat i permet als cossos mantenir-se en trajectòries més o menys estables anomenades òrbites.

Les òrbites dels cossos del sistema solar estan determinades per les lleis de Kepler, descobertes per l'astrònom alemany Johannes Kepler entre el 1609 i el 1618. Aquestes lleis són tres i diuen el següent:

  • 1a Llei: Els planetes descriuen òrbites el·líptiques, amb el Sol situat en un dels focus.
El grau d'allargament d'una el·lipse es mesura amb l'excentricitat, que val 0 si la corba és una circumferència i 1 si és una paràbola. Per a la majoria de planetes, l'excentricitat és menor que 0,1 i, per tant, les seves òrbites són pràcticament circulars. Dues excepcions són Mercuri amb 0,21 i Plutó amb 0,25.
  • 2a Llei: La línia que uneix un planeta amb el Sol escombra àrees iguals en temps iguals.
És a dir, el planeta es desplaça més ràpidament quan està a prop del Sol (al voltant del periheli) que quan n'està allunyat (al voltant de l'afeli). Això és així perquè la gravetat del Sol accelera el planeta quan s'acosta i el desaccelera quan s'allunya. Com que les òrbites dels planetes són quasi-circulars aquest efecte no es nota gaire. És molt més evident, però, en les òrbites dels cometes, que tenen òrbites molt excèntriques.
Quant menor és la distància mitjana Sol-planeta, menys tarda aquest en completar la seva òrbita: Mercuri es mou més ràpid que Venus, Venus més ràpid que la Terra,... i així successivament fins a Plutó que tarda 248 anys en donar una volta al Sol.

Kepler va enunciar aquestes lleis per a les òrbites dels planetes al voltant del Sol però, de forma més general, són vàlides per a qualsevol cos que n'orbiti a un altre sempre que la massa del cos orbitant sigui negligible respecte a la massa del cos central. Això es compleix per als planetes respecte al Sol i per a la majoria de satèl·lits respecte als seus corresponents planetes. Una altra limitació d'aquestes lleis és que no funcionen bé en un sistema de més de dos cossos. Per exemple, en el cas del sistema Sol-Terra-Lluna l'aproximació no és gaire bona. Per a calcular l'òrbita de la Lluna, el mètode empíric inventat per Ptolemeu fa més de dos mil anys és més exacte que les lleis de Kepler. Isaac Newton va generalitzar les lleis de Kepler per als cossos amb una velocitat major que la velocitat d'escapament i que, per tant, no tindran una òrbita el·líptica sinó parabòlica o hiperbòlica. En aquests casos, la segona llei continua sent vàlida però la tercera llei no és aplicable perquè, en ser òrbites obertes, el moviment no serà periòdic.

A més de seguir les lleis de Kepler, les òrbites dels planetes del sistema solar es caracteritzen per trobar-se, aproximadament, en un mateix pla anomenat pla de l'eclíptica. El pla de l'eclíptica és el pla que conté l'òrbita de la Terra. El fet d'haver pres aquest pla com a pla de referència és per comoditat, en podríem haver escollit qualsevol altre. El fet important és que la inclinació dels plans orbitals dels planetes és gairebé la mateixa per a tots ells. La principal excepció és Plutó, l'òrbita del qual està inclinada 17 ° respecte a l'eclíptica. Els cometes i molts dels objectes transneptunians també tenen òrbites molt inclinades. Aquest és un dels motius pels quals es pensa que Plutó podria no ser un verdader planeta sinó un planetoide. Aquest aplatament dels plans de les òrbites és conseqüència del procés de formació del sistema solar: la rotació de la nebulosa solar va provocar el seu propi aplatament formant un disc perpendicular a l'eix de rotació del Sol. Els cossos amb òrbites molt inclinades s'haurien format molt aviat en el procés de formació, abans que la nebulosa s'aplatés massa.

Distàncies i escales

Quan s'han de mesurar distàncies dins del sistema solar, les unitats de longitud que s'utilitzen habitualment a la Terra, com ara el quilòmetre, queden petites. Per qüestions pràctiques, s'ha definit una unitat anomenada unitat astronòmica o UA de forma que 1 UA és igual a la distància mitjana entre el Sol i la Terra, és a dir, uns 150 milions de km.

Tot i el fet que en molts diagrames (com en el de la imatge inferior), per qüestions pràctiques es representa el sistema solar com si hi hagués la mateixa distància entre l'òrbita de cada planeta, en realitat les òrbites planetàries segueixen, aproximadament, una progressió geomètrica, és a dir, que cada planeta es troba al doble de distància del Sol que el planeta precedent: Venus està el doble de lluny que Mercuri, la Terra el doble que Venus, Mart el doble que la Terra,... Aquesta relació s'expressa en la llei de Titius-Bode, una fórmula matemàtica per a predir el semieix major () de l'òrbita dels planetes en UA. S'escriu així:

on k = 0, 1, 2, 4, 8, 16, 32, 64, 128.

Segons aquesta fórmula, esperaríem que Mercuri (k=0) es trobés a 0,4 UA i Mart (k=4) a 1,6 UA. En realitat, aquesta llei només es compleix aproximadament (Mercuri està a 0,39 UA i Mart a 1,52 UA); a k=8 no hi ha cap planeta sinó Ceres, l'asteroide més gran; Neptú està molt més a prop de l'esperat i Plutó es troba allà on hauria d'estar Neptú. Actualment no hi ha cap explicació científica de perquè aquesta llei "funciona" i molts diuen que és només coincidència.

Els planetes i els principals satèl·lits del sistema solar. Al fons, el Sol. Els diàmetres són a escala: 1 píxel = 1000 km.
Distància mitjana al Sol
Nom Semieix major (UA)
Mercuri 0,39
Venus 0,72
Terra 1,00
Mart 1,52
Cinturó d'asteroides 2,06 - 3,27
Júpiter 5,20
Saturn 9,54
Urà 19,18
Neptú 30,06
Cinturó de Kuiper 30 - 50
Núvol d'Oort ~50.000? - ~100.000
Unitat astronòmicaUnitat astronòmicaUnitat astronòmicaUnitat astronòmicaUnitat astronòmicaUnitat astronòmicaUnitat astronòmicaUnitat astronòmicaUnitat astronòmicaUnitat astronòmicaCometa HalleySolEris (planeta nan)Makemake (planeta nan)Haumea (planeta nan)PlutóCeres (planeta nan)NeptúUràSaturnJúpiterMartTerraVenusMercuri (planeta)Unitat astronòmicaUnitat astronòmicaPlaneta nanPlaneta nanCometaPlaneta

Les distàncies dels cossos seleccionats del sistema solar des del sol. Les vores esquerra i dreta de cada barra corresponen al periheli i afeli del cos, respectivament. Les barres llargues denoten l'alta excentricitat orbital. El radi del sol és 0,7 milions de km, i el radi de Júpiter (el planeta més gran) és 0,07 milions de km, ambdós massa petits per aparèixer sobre aquesta imatge.

Formació del sistema solar

Formació del sistema solar a partir del disc d'acreció. En el centre es troba el protoestel, al seu voltant els planetesimals col·lideixen entre si fins a formar planetes.

Actualment, la teoria més acceptada pel que fa a la formació del sistema solar diu que el Sol i els planetes es van formar al mateix temps. Segons aquesta teoria, el Sistema Solar va començar com un núvol de gas interestel·lar o nebulosa que es va anar contraient a causa de la força gravitatòria fins a formar un estel, el Sol i una sèrie de cossos més petits, els planetes.

El procés va començar fa uns 4.600 milions d'anys. La nebulosa, que devia tenir unes 100 UA de diàmetre, va ser pertorbada per alguna cosa, potser l'explosió d'una supernova no molt llunyana i va començar a contraure's. Tot el material es va anar comprimint, formant una bola de gas en el centre. La nebulosa, com tota la galàxia, estava en rotació i la seva velocitat de rotació va anar augmentant a mesura que es contreia. Això va fer que la nebulosa s'aplanés formant el disc d'acreció, perpendicular al seu eix de rotació. El centre del disc, on el material estava més comprimit, es va començar a escalfar formant una bola de gas calent anomenada protoestel. Lluny del centre del disc, es van formar partícules sòlides; primer metalls com el ferro i el níquel, i després roques com el silici, i a la part més exterior, gel d'aigua, d'amoníac i de metà. A poc a poc, el refredament progressiu va deixar que es formessin petites partícules que, gràcies a la gravetat, es van anar ajuntant formant planetesimals. Amb el temps, els planetesimals van anar col·lidint entre si, formant cossos més grans, els planetes. Els planetes més grans van atreure gran quantitat de gas i per això van aconseguir unes denses atmosferes com la de Júpiter. Els satèl·lits i els anells es van formar a partir de discs creats al voltant dels primitius planetes. En cert moment del procés, el nucli del protoestel es va escalfar prou per a donar lloc a reaccions termonuclears de fusió, generant gran quantitat de calor. En conjunt, tot el procés devia durar uns 100 milions d'anys.

El sistema solar romandrà més o menys com el coneixem avui en dia fins que l'hidrogen en el nucli del sol s'hagi convertit enterament en heli, el que passarà més o menys d'aquí 5,4 bilions d'anys des d'ara. Això marcarà el final de la seqüència principal de la vida del Sol. En aquest moment, el nucli del sol es col·lapsarà, i la sortida d'energia serà molt més gran que en l'actualitat. Les capes exteriors del sol s'expandiran a unes 260 vegades el seu diàmetre actual, i el sol es convertirà en una gegant vermella. A causa del seu gran augment de superfície, la superfície del Sol serà considerablement més freda (2.600 K en el seu moment més fresc) del que és en la seqüència principal.[32] S'espera que l'expansió de Sun vaporitzi Mercuri i Venus i fer inhabitable la Terra com la zona habitable es mouria fora de l'òrbita de Mart. Amb el temps, el nucli serà prou calent per a la fusió de l'heli, el sol crema heli per una fracció del temps que es crema hidrogen en el nucli. El sol no és prou massiu per iniciar la fusió d'elements més pesats, i les reaccions nuclears en el nucli disminuiran. Les seves capes exteriors es mouran cap a l'espai, deixant una nana blanca, un objecte extraordinàriament dens, la meitat de la massa original del sol, però només la mida de la Terra.[33] Les capes externes expulsades formaran el que es coneix com una nebulosa planetària, retornant alguna cosa del material que forma el va formar el sol-però ara enriquida amb elements pesats com el carboni—al medi interestel·lar.

Sun

The Sun compared to the planets

The Sun is the Solar System's star, and by far its chief component. Its large mass (332,900 Earth masses)[34] produces temperatures and densities in its core high enough to sustain nuclear fusion,[35] which releases enormous amounts of energy, mostly radiated into space as electromagnetic radiation, peaking in the 400–700 nm band of visible light.[36]

The Sun is a type G2 main-sequence star. Compared to the majority of stars in the Milky Way, the Sun is rather large and bright.[37] Stars are classified by the Hertzsprung–Russell diagram, a graph that plots the brightness of stars with their surface temperatures. Generally, hotter stars are brighter. Stars following this pattern are said to be on the main sequence, and the Sun lies right in the middle of it. Stars brighter and hotter than the Sun are rare, whereas substantially dimmer and cooler stars, known as red dwarfs, are common, making up 85% of the stars in the galaxy.[37][38]

Evidence suggests that the Sun's position on the main sequence puts it in the "prime of life" for a star, not yet having exhausted its store of hydrogen for nuclear fusion. The Sun is growing brighter; early in its history its brightness was 70% that of what it is today.[39]

The Sun is a population I star; it was born in the later stages of the universe's evolution and thus contains more elements heavier than hydrogen and helium ("metals" in astronomical parlance) than the older population II stars.[40] Elements heavier than hydrogen and helium were formed in the cores of ancient and exploding stars, so the first generation of stars had to die before the universe could be enriched with these atoms. The oldest stars contain few metals, whereas stars born later have more. This high metallicity is thought to have been crucial to the Sun's development of a planetary system because the planets form from the accretion of "metals".[41]

Interplanetary medium

The heliospheric current sheet

The vast majority of the volume of the Solar System consists of a near-vacuum known as the interplanetary medium. Along with light, the Sun radiates a continuous stream of charged particles (a plasma) known as the solar wind. This stream of particles spreads outwards at roughly 1.5 million kilometres (932 thousand miles) per hour,[42] creating a tenuous atmosphere (the heliosphere) that permeates the interplanetary medium out to at least 100 AU (see heliopause).[43] Activity on the Sun's surface, such as solar flares and coronal mass ejections, disturb the heliosphere, creating space weather and causing geomagnetic storms.[44] The largest structure within the heliosphere is the heliospheric current sheet, a spiral form created by the actions of the Sun's rotating magnetic field on the interplanetary medium.[45][46]

Earth's magnetic field stops its atmosphere from being stripped away by the solar wind. Venus and Mars do not have magnetic fields, and as a result, the solar wind causes their atmospheres to gradually bleed away into space.Plantilla:Dubious[47] Coronal mass ejections and similar events blow a magnetic field and huge quantities of material from the surface of the Sun. The interaction of this magnetic field and material with Earth's magnetic field funnels charged particles into Earth's upper atmosphere, where its interactions create aurorae seen near the magnetic poles.

The heliosphere and planetary magnetic fields (for those planets that have them) partially shield the Solar System from high-energy interstellar particles called cosmic rays. The density of cosmic rays in the interstellar medium and the strength of the Sun's magnetic field change on very long timescales, so the level of cosmic-ray penetration in the Solar System varies, though by how much is unknown.[48]

The interplanetary medium is home to at least two disc-like regions of cosmic dust. The first, the zodiacal dust cloud, lies in the inner Solar System and causes the zodiacal light. It was likely formed by collisions within the asteroid belt brought on by interactions with the planets.[49] The second dust cloud extends from about 10 AU to about 40 AU, and was probably created by similar collisions within the Kuiper belt.[50][51]

Inner Solar System

The inner Solar System is the traditional name for the region comprising the terrestrial planets and asteroids.[52] Composed mainly of silicates and metals, the objects of the inner Solar System are relatively close to the Sun; the radius of this entire region is shorter than the distance between the orbits of Jupiter and Saturn.

Inner planets

The inner planets. From left to right: Earth, Mars, Venus, and Mercury (sizes to scale, interplanetary distances not)

The four inner or terrestrial planets have dense, rocky compositions, few or no moons, and no ring systems. They are composed largely of refractory minerals, such as the silicates, which form their crusts and mantles, and metals such as iron and nickel, which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather; all have impact craters and tectonic surface features such as rift valleys and volcanoes. The term inner planet should not be confused with inferior planet, which designates those planets that are closer to the Sun than Earth is (i.e. Mercury and Venus).

Mercury

Mercury (0.4 AU from the Sun) is the closest planet to the Sun and the smallest planet in the Solar System (0.055 Earth masses). Mercury has no natural satellites, and its only known geological features besides impact craters are lobed ridges or rupes, probably produced by a period of contraction early in its history.[53] Mercury's almost negligible atmosphere consists of atoms blasted off its surface by the solar wind.[54] Its relatively large iron core and thin mantle have not yet been adequately explained. Hypotheses include that its outer layers were stripped off by a giant impact; or, that it was prevented from fully accreting by the young Sun's energy.[55][56]

Venus

Venus (0.7 AU from the Sun) is close in size to Earth (0.815 Earth masses) and, like Earth, has a thick silicate mantle around an iron core, a substantial atmosphere, and evidence of internal geological activity. It is much drier than Earth, and its atmosphere is ninety times as dense. Venus has no natural satellites. It is the hottest planet, with surface temperatures over 400 °C (752°F), most likely due to the amount of greenhouse gases in the atmosphere.[57] No definitive evidence of current geological activity has been detected on Venus, but it has no magnetic field that would prevent depletion of its substantial atmosphere, which suggests that its atmosphere is frequently replenished by volcanic eruptions.[58]

Earth

Earth (1 AU from the Sun) is the largest and densest of the inner planets, the only one known to have current geological activity, and the only place where life is known to exist.[59] Its liquid hydrosphere is unique among the terrestrial planets, and it is the only planet where plate tectonics has been observed. Earth's atmosphere is radically different from those of the other planets, having been altered by the presence of life to contain 21% free oxygen.[60] It has one natural satellite, the Moon, the only large satellite of a terrestrial planet in the Solar System.

Mars

Mars (1.5 AU from the Sun) is smaller than Earth and Venus (0.107 Earth masses). It possesses an atmosphere of mostly carbon dioxide with a surface pressure of 6.1 millibars (roughly 0.6% of that of Earth).[61] Its surface, peppered with vast volcanoes such as Olympus Mons and rift valleys such as Valles Marineris, shows geological activity that may have persisted until as recently as 2 million years ago.[62] Its red colour comes from iron oxide (rust) in its soil.[63] Mars has two tiny natural satellites (Deimos and Phobos) thought to be captured asteroids.[64]

Asteroid belt

Image of the asteroid belt (white), the Jupiter trojans (green), the Hildas (orange), and near-Earth asteroids.

Asteroids are small Solar System bodies[c] composed mainly of refractory rocky and metallic minerals, with some ice.[65]

The asteroid belt occupies the orbit between Mars and Jupiter, between 2.3 and 3.3 AU from the Sun. It is thought to be remnants from the Solar System's formation that failed to coalesce because of the gravitational interference of Jupiter.[66]

Asteroids range in size from hundreds of kilometres across to microscopic. All asteroids except the largest, Ceres, are classified as small Solar System bodies.[67]

The asteroid belt contains tens of thousands, possibly millions, of objects over one kilometre in diameter.[68] Despite this, the total mass of the asteroid belt is unlikely to be more than a thousandth of that of Earth.[16] The asteroid belt is very sparsely populated; spacecraft routinely pass through without incident. Asteroids with diameters between 10 and 10−4 m are called meteoroids.[69]

Ceres

Ceres (2.77 AU) is the largest asteroid, a protoplanet, and a dwarf planet.[c] It has a diameter of slightly under 1000 km, and a mass large enough for its own gravity to pull it into a spherical shape. Ceres was considered a planet when it was discovered in 1801, and was reclassified to asteroid in the 1850s as further observations revealed additional asteroids.[70] It was classified as a dwarf planet in 2006.

Asteroid groups

Asteroids in the asteroid belt are divided into asteroid groups and families based on their orbital characteristics. Asteroid moons are asteroids that orbit larger asteroids. They are not as clearly distinguished as planetary moons, sometimes being almost as large as their partners. The asteroid belt also contains main-belt comets, which may have been the source of Earth's water.[71]

Jupiter trojans are located in either of Jupiter's L4 or L5 points (gravitationally stable regions leading and trailing a planet in its orbit); the term "trojan" is also used for small bodies in any other planetary or satellite Lagrange point. Hilda asteroids are in a 2:3 resonance with Jupiter; that is, they go around the Sun three times for every two Jupiter orbits.[72]

The inner Solar System is also dusted with rogue asteroids, many of which cross the orbits of the inner planets.[73]

Outer Solar System

The outer region of the Solar System is home to the gas giants and their large moons. Many short-period comets, including the centaurs, also orbit in this region. Due to their greater distance from the Sun, the solid objects in the outer Solar System contain a higher proportion of volatiles, such as water, ammonia and methane, than the rocky denizens of the inner Solar System because the colder temperatures allow these compounds to remain solid.

Outer planets

From top to bottom: Neptune, Uranus, Saturn, and Jupiter (Montage with approximate colour and size)

The four outer planets, or gas giants (sometimes called Jovian planets), collectively make up 99% of the mass known to orbit the Sun.[e] Jupiter and Saturn are each many tens of times the mass of Earth and consist overwhelmingly of hydrogen and helium; Uranus and Neptune are far less massive (<20 Earth masses) and possess more ices in their makeup. For these reasons, some astronomers suggest they belong in their own category, "ice giants".[74] All four gas giants have rings, although only Saturn's ring system is easily observed from Earth. The term superior planet designates planets outside Earth's orbit and thus includes both the outer planets and Mars.

Jupiter

Jupiter (5.2 AU), at 318 Earth masses, is 2.5 times the mass of all the other planets put together. It is composed largely of hydrogen and helium. Jupiter's strong internal heat creates semi-permanent features in its atmosphere, such as cloud bands and the Great Red Spot.
Jupiter has 67 known satellites. The four largest, Ganymede, Callisto, Io, and Europa, show similarities to the terrestrial planets, such as volcanism and internal heating.[75] Ganymede, the largest satellite in the Solar System, is larger than Mercury.

Saturn

Saturn (9.5 AU), distinguished by its extensive ring system, has several similarities to Jupiter, such as its atmospheric composition and magnetosphere. Although Saturn has 60% of Jupiter's volume, it is less than a third as massive, at 95 Earth masses, making it the least dense planet in the Solar System.[76] The rings of Saturn are made up of small ice and rock particles.
Saturn has 62 confirmed satellites; two of which, Titan and Enceladus, show signs of geological activity, though they are largely made of ice.[77] Titan, the second-largest moon in the Solar System, is larger than Mercury and the only satellite in the Solar System with a substantial atmosphere.

Uranus

Uranus (19.2 AU), at 14 Earth masses, is the lightest of the outer planets. Uniquely among the planets, it orbits the Sun on its side; its axial tilt is over ninety degrees to the ecliptic. It has a much colder core than the other gas giants and radiates very little heat into space.[78]
Uranus has 27 known satellites, the largest ones being Titania, Oberon, Umbriel, Ariel, and Miranda.

Neptune

Neptune (30 AU), though slightly smaller than Uranus, is more massive (equivalent to 17 Earths) and therefore more dense. It radiates more internal heat, but not as much as Jupiter or Saturn.[79]
Neptune has 14 known satellites. The largest, Triton, is geologically active, with geysers of liquid nitrogen.[80] Triton is the only large satellite with a retrograde orbit. Neptune is accompanied in its orbit by several minor planets, termed Neptune trojans, that are in 1:1 resonance with it.

Centaurs

The centaurs are icy comet-like bodies whose orbits have semi-major axes greater than Jupiter's (5.5 AU) and less than Neptune's (30 AU). The largest known centaur, 10199 Chariklo, has a diameter of about 250 km.[81] The first centaur discovered, 2060 Chiron, has also been classified as comet (95P) because it develops a coma just as comets do when they approach the Sun.[82]

Comets

Comet Hale–Bopp

Comets are small Solar System bodies,[c] typically only a few kilometres across, composed largely of volatile ices. They have highly eccentric orbits, generally a perihelion within the orbits of the inner planets and an aphelion far beyond Pluto. When a comet enters the inner Solar System, its proximity to the Sun causes its icy surface to sublimate and ionise, creating a coma: a long tail of gas and dust often visible to the naked eye.

Short-period comets have orbits lasting less than two hundred years. Long-period comets have orbits lasting thousands of years. Short-period comets are believed to originate in the Kuiper belt, whereas long-period comets, such as Hale–Bopp, are believed to originate in the Oort cloud. Many comet groups, such as the Kreutz Sungrazers, formed from the breakup of a single parent.[83] Some comets with hyperbolic orbits may originate outside the Solar System, but determining their precise orbits is difficult.[84] Old comets that have had most of their volatiles driven out by solar warming are often categorised as asteroids.[85]

Trans-Neptunian region

The area beyond Neptune, or the "trans-Neptunian region", is still largely unexplored. It appears to consist overwhelmingly of small worlds (the largest having a diameter only a fifth that of Earth and a mass far smaller than that of the Moon) composed mainly of rock and ice. This region is sometimes known as the "outer Solar System", though others use that term to mean the region beyond the asteroid belt.

Kuiper belt

Plot of all Kuiper belt objects known in 2007, set against the four outer planets

The Kuiper belt is a great ring of debris similar to the asteroid belt, but consisting mainly of objects composed primarily of ice.[86] It extends between 30 and 50 AU from the Sun. Though it is estimated to contain anything from dozens to thousands of dwarf planets, it is composed mainly of small Solar System bodies. Many of the larger Kuiper belt objects, such as Quaoar, Varuna, and Orcus, may prove to be dwarf planets with further data. There are estimated to be over 100,000 Kuiper belt objects with a diameter greater than 50 km, but the total mass of the Kuiper belt is thought to be only a tenth or even a hundredth the mass of Earth.[15] Many Kuiper belt objects have multiple satellites,[87] and most have orbits that take them outside the plane of the ecliptic.[88]

The Kuiper belt can be roughly divided into the "classical" belt and the resonances.[86] Resonances are orbits linked to that of Neptune (e.g. twice for every three Neptune orbits, or once for every two). The first resonance begins within the orbit of Neptune itself. The classical belt consists of objects having no resonance with Neptune, and extends from roughly 39.4 AU to 47.7 AU.[89] Members of the classical Kuiper belt are classified as cubewanos, after the first of their kind to be discovered, (15760) 1992 QB1, and are still in near primordial, low-eccentricity orbits.[90]

Pluto and Charon

Plantilla:TNO imagemap The dwarf planet Pluto (39 AU average) is the largest known object in the Kuiper belt. When discovered in 1930, it was considered to be the ninth planet; this changed in 2006 with the adoption of a formal definition of planet. Pluto has a relatively eccentric orbit inclined 17 degrees to the ecliptic plane and ranging from 29.7 AU from the Sun at perihelion (within the orbit of Neptune) to 49.5 AU at aphelion.

Charon, Pluto's largest moon, is sometimes described as part of a binary system with Pluto, as the two bodies orbit a barycentre of gravity above their surfaces (i.e. they appear to "orbit each other"). Beyond Charon, four much smaller moons, Styx, Nix, Kerberos, and Hydra, are known to orbit within the system.

Pluto has a 3:2 resonance with Neptune, meaning that Pluto orbits twice round the Sun for every three Neptunian orbits. Kuiper belt objects whose orbits share this resonance are called plutinos.[91]

Makemake and Haumea

Makemake (45.79 AU average), although smaller than Pluto, is the largest known object in the classical Kuiper belt (that is, it is not in a confirmed resonance with Neptune). Makemake is the brightest object in the Kuiper belt after Pluto. It was named and designated a dwarf planet in 2008.[7] Its orbit is far more inclined than Pluto's, at 29°.[92]

Haumea (43.13 AU average) is in an orbit similar to Makemake except that it is caught in a 7:12 orbital resonance with Neptune.[93] It is about the same size as Makemake and has two natural satellites. A rapid, 3.9-hour rotation gives it a flattened and elongated shape. It was named and designated a dwarf planet in 2008.[94]

Scattered disc

The scattered disc, which overlaps the Kuiper belt but extends much further outwards, is thought to be the source of short-period comets. Scattered disc objects are believed to have been ejected into erratic orbits by the gravitational influence of Neptune's early outward migration. Most scattered disc objects (SDOs) have perihelia within the Kuiper belt but aphelia far beyond it (some have aphelia farther than 150 AU from the Sun). SDOs' orbits are also highly inclined to the ecliptic plane and are often almost perpendicular to it. Some astronomers consider the scattered disc to be merely another region of the Kuiper belt and describe scattered disc objects as "scattered Kuiper belt objects".[95] Some astronomers also classify centaurs as inward-scattered Kuiper belt objects along with the outward-scattered residents of the scattered disc.[96]

Eris

Eris (68 AU average) is the largest known scattered disc object, and caused a debate about what constitutes a planet, because it is 25% more massive than Pluto[97] and about the same diameter. It is the most massive of the known dwarf planets. It has one known moon, Dysnomia. Like Pluto, its orbit is highly eccentric, with a perihelion of 38.2 AU (roughly Pluto's distance from the Sun) and an aphelion of 97.6 AU, and steeply inclined to the ecliptic plane.

Regions més llunyanes

The point at which the Solar System ends and interstellar space begins is not precisely defined because its outer boundaries are shaped by two separate forces: the solar wind and the Sun's gravity. The outer limit of the solar wind's influence is roughly four times Pluto's distance from the Sun; this heliopause is considered the beginning of the interstellar medium.[43] The Sun's Hill sphere, the effective range of its gravitational dominance, is believed to extend up to a thousand times farther.[98]

Heliopausa

Energetic neutral atoms map of heliosheath and heliopause by IBEX. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio.

The heliosphere is divided into two separate regions. The solar wind travels at roughly 400 km/s until it collides with the interstellar wind; the flow of plasma in the interstellar medium. The collision occurs at the termination shock, which is roughly 80–100 AU from the Sun upwind of the interstellar medium and roughly 200 AU from the Sun downwind.[99] Here the wind slows dramatically, condenses, and becomes more turbulent,[99] forming a great oval structure known as the heliosheath. This structure is believed to look and behave very much like a comet's tail, extending outward for a further 40 AU on the upwind side but tailing many times that distance downwind; evidence from the Cassini and Interstellar Boundary Explorer spacecraft has suggested that it is forced into a bubble shape by the constraining action of the interstellar magnetic field.[100] The outer boundary of the heliosphere, the heliopause, is the point at which the solar wind finally terminates and is the beginning of interstellar space.[43] Both Voyager 1 and Voyager 2 are reported to have passed the termination shock and entered the heliosheath, at 94 and 84 AU from the Sun, respectively.[101][102] Voyager 1 is also reported to have reached the heliopause.[103]

The shape and form of the outer edge of the heliosphere is likely affected by the fluid dynamics of interactions with the interstellar medium[99] as well as solar magnetic fields prevailing to the south, e.g. it is bluntly shaped with the northern hemisphere extending 9 AU farther than the southern hemisphere. Beyond the heliopause, at around 230 AU, lies the bow shock, a plasma "wake" left by the Sun as it travels through the Milky Way.[104]

Due to a lack of data, the conditions in local interstellar space are not known for certain. It is expected that NASA's Voyager spacecraft, as they pass the heliopause, will transmit valuable data on radiation levels and solar wind back to Earth.[105] How well the heliosphere shields the Solar System from cosmic rays is poorly understood. A NASA-funded team has developed a concept of a "Vision Mission" dedicated to sending a probe to the heliosphere.[106][107]

Objectes separats

90377 Sedna (520 AU average) is a large, reddish object with a gigantic, highly elliptical orbit that takes it from about 76 AU at perihelion to 940 AU at aphelion and takes 11,400 years to complete. Mike Brown, who discovered the object in 2003, asserts that it cannot be part of the scattered disc or the Kuiper belt as its perihelion is too distant to have been affected by Neptune's migration. He and other astronomers consider it to be the first in an entirely new population, sometimes termed "distant detached objects" (DDOs), which also may include the object Plantilla:Mpl-, which has a perihelion of 45 AU, an aphelion of 415 AU, and an orbital period of 3,420 years.[108] Brown terms this population the "inner Oort cloud" because it may have formed through a similar process, although it is far closer to the Sun.[109] Sedna is very likely a dwarf planet, though its shape has yet to be determined. The second unequivocally detached object, with a perihelion farther than Sedna's at roughly 81 AU, is 2012 VP113, discovered in 2012. Its aphelion is only half that of Sedna's, at 400–500 AU.[110][111]

Núvol d'Oort

An artist's rendering of the Oort cloud, the Hills cloud, and the Kuiper belt (inset)

The Oort cloud is a hypothetical spherical cloud of up to a trillion icy objects that is believed to be the source for all long-period comets and to surround the Solar System at roughly 50,000 AU (around 1 light-year (ly)), and possibly to as far as 100,000 AU (1.87 ly). It is believed to be composed of comets that were ejected from the inner Solar System by gravitational interactions with the outer planets. Oort cloud objects move very slowly, and can be perturbed by infrequent events such as collisions, the gravitational effects of a passing star, or the galactic tide, the tidal force exerted by the Milky Way.[112][113]

Límits

Much of the Solar System is still unknown. The Sun's gravitational field is estimated to dominate the gravitational forces of surrounding stars out to about two light years (125,000 AU). Lower estimates for the radius of the Oort cloud, by contrast, do not place it farther than 50,000 AU.[114] Despite discoveries such as Sedna, the region between the Kuiper belt and the Oort cloud, an area tens of thousands of AU in radius, is still virtually unmapped. There are also ongoing studies of the region between Mercury and the Sun.[115] Objects may yet be discovered in the Solar System's uncharted regions.

In November 2012 NASA announced that as Voyager 1 approached the transition zone to the outer limit of the Solar System, its instruments detected a sharp intensification of the magnetic field. No change in the direction of the magnetic field had occurred, which NASA scientists then interpreted to indicate that Voyager 1 had not yet left the Solar System.[116]

Context galàctic

Position of the Solar System within the Milky Way
Position of the Solar System within the Milky Way


The Solar System is located in the Milky Way, a barred spiral galaxy with a diameter of about 100,000 light-years containing about 200 billion stars.[117] The Sun resides in one of the Milky Way's outer spiral arms, known as the Orion–Cygnus Arm or Local Spur.[118] The Sun lies between 25,000 and 28,000 light years from the Galactic Centre,[119] and its speed within the galaxy is about 220 kilometres per second (140 mi/s), so that it completes one revolution every 225–250 million years. This revolution is known as the Solar System's galactic year.[120] The solar apex, the direction of the Sun's path through interstellar space, is near the constellation Hercules in the direction of the current location of the bright star Vega.[121] The plane of the ecliptic lies at an angle of about 60° to the galactic plane.[f]

The Solar System's location in the galaxy is a factor in the evolution of life on Earth. Its orbit is close to circular, and orbits near the Sun are at roughly the same speed as that of the spiral arms. Therefore, the Sun passes through arms only rarely. Because spiral arms are home to a far larger concentration of supernovae, gravitational instabilities, and radiation that could disrupt the Solar System, this has given Earth long periods of stability for life to evolve.[123] The Solar System also lies well outside the star-crowded environs of the galactic centre. Near the centre, gravitational tugs from nearby stars could perturb bodies in the Oort Cloud and send many comets into the inner Solar System, producing collisions with potentially catastrophic implications for life on Earth. The intense radiation of the galactic centre could also interfere with the development of complex life.[123] Even at the Solar System's current location, some scientists have hypothesised that recent supernovae may have adversely affected life in the last 35,000 years by flinging pieces of expelled stellar core towards the Sun as radioactive dust grains and larger, comet-like bodies.[124]

Veïnatge

Beyond the heliosphere is the interstellar medium, consisting of various clouds of gases. (see Local Interstellar Cloud)

The Solar System is currently located in the Local Interstellar Cloud or Local Fluff. It is thought to be near the neighbouring G-Cloud, but it is unknown if the Solar System is embedded in the Local Interstellar Cloud, or if it is in the region where the Local Interstellar Cloud and G-Cloud are interacting.[125][126] The Local Interstellar Cloud is an area of denser cloud in an otherwise sparse region known as the Local Bubble, an hourglass-shaped cavity in the interstellar medium roughly 300 light years across. The bubble is suffused with high-temperature plasma that suggests it is the product of several recent supernovae.[127]

There are relatively few stars within ten light years (95 trillion km, or 60 trillion mi) of the Sun. The closest is the triple star system Alpha Centauri, which is about 4.4 light years away. Alpha Centauri A and B are a closely tied pair of Sun-like stars, whereas the small red dwarf Alpha Centauri C (also known as Proxima Centauri) orbits the pair at a distance of 0.2 light years. The stars next closest to the Sun are the red dwarfs Barnard's Star (at 5.9 light years), Wolf 359 (7.8 light years), and Lalande 21185 (8.3 light years). The largest star within ten light years is Sirius, a bright main-sequence star roughly twice the Sun's mass and orbited by a white dwarf called Sirius B. It lies 8.6 light years away. The remaining systems within ten light years are the binary red-dwarf system Luyten 726-8 (8.7 light years) and the solitary red dwarf Ross 154 (9.7 light years).[128] The Solar System's closest solitary Sun-like star is Tau Ceti, which lies 11.9 light years away. It has roughly 80% of the Sun's mass but only 60% of its luminosity.[129] The closest known extrasolar planet to the Sun lies around Alpha Centauri B. Its one confirmed planet, Alpha Centauri Bb, is at least 1.1 times Earth's mass and orbits its star every 3.236 days.[130]

A diagram of Earth's location in the observable Universe. (Click here for an alternate image.)

Resum visual

This section is a sampling of Solar System bodies, selected for size and quality of imagery, and sorted by volume. Some omitted objects are larger than the ones included here, notably Pluto and Eris, because these have not been imaged in high quality. Plantilla:SolarSummary

Regions del sistema solar

Generalment, els astrònoms divideixen el sistema solar en dues regions: el sistema solar interior (o tel·lúric) i el sistema solar exterior.

Sistema solar interior

El sistema solar interior és la regió que va des del centre del sistema solar, on es troba el Sol, fins al cinturó d'asteroides (entre 2,06 i 3,27 UA del Sol) i inclou els quatre planetes interiors.

El Sol és una estrella de la seqüència principal de classe espectral G2. Això significa que és una mica més gran i calenta que una estrella mitjana. Té un diàmetre d'1,4 milions de km i una massa de 2·1030 kg. Està format per un 71% d'hidrogen, un 21% d'heli (en massa) i algunes traces d'elements més pesants. En el seu interior, la temperatura pot arribar als 13,6 milions de graus. Aquestes temperatures permeten que en el nucli hi tinguin lloc reaccions nuclears de fusió (principalment, hidrogen que es converteix en heli). L'energia produïda en aquestes reaccions es transmet cap a l'exterior i és radiada a l'espai en forma de llum i calor. La temperatura a la superfície és de 5.780 K que equival a una longitud d'ona de la llum en el rang del color groc. Es va formar fa uns 5.000 milions d'anys, al mateix temps que el sistema solar, i arribarà al final de la seva vida d'aquí a uns 5.000 milions d'anys més. Arribat aquell moment, es convertirà en una gegant vermella i després en una nana blanca.

Els quatre planetes terrestres del sistema solar. D'esquerra a dreta: Mercuri, Venus, la Terra i Mart.

Els planetes interiors són Mercuri, Venus, la Terra i Mart. També s'anomenen planetes terrestres o tel·lúrics perquè, a diferència dels exteriors, tenen unes característiques físiques semblants a les de la Terra. Es caracteritzen per tenir una escorça de roca sòlida, un diàmetre relativament petit i una densitat relativament alta (~5 gr/cm3) (comparats amb els exteriors). Al seu interior, tots tenen un nucli de ferro i un mantell semilíquid. Excepte Mercuri, tots tenen una atmosfera gasosa més o menys densa. Tots tenen cràters d'impacte i molts tenen o han tingut activitat tectònica que ha format muntanyes, valls, volcans,... Cap d'ells té anells i només la Terra (la Lluna) i Mart (Fobos i Deimos) tenen satèl·lits naturals.

El cinturó d'asteroides és la regió del sistema solar on es concentren la gran majoria dels asteroides (fins a un 98%). Es troba entre les òrbites de Mart i Júpiter i per tant en el límit entre el sistema solar interior i l'exterior. Els asteroides es diferencien dels planetes per la seva mida més reduïda i dels objectes transneptunians per estar formats per roca sòlida i metalls en lloc de gel. L'asteroide més gran és Ceres amb 950 km de diàmetre. Altres asteroides de gran mida són: Pal·les i Vesta. Alguns asteroides tenen satèl·lits asteroidals com, per exemple, (243) Ida i el seu asteroide Dàctil.

Sistema solar exterior

El sistema solar exterior és la regió que va des del cinturó d'asteroides fins als límits del sistema solar. Inclou els planetes exteriors, els centaures, el cinturó de Kuiper, el disc dispers i el núvol d'Oort. En els últims anys, el descobriment de gran nombre d'objectes en la regió més enllà de l'òrbita de Neptú ha fet que, anàlogament al que passa amb el cinturó d'asteroides, a vegades es consideri el cinturó de Kuiper com el límit del sistema solar exterior.

Els quatre gegants gasosos del sistema solar. De dalt a baix: Neptú, Urà, Saturn i Júpiter.

Els planetes exteriors són Júpiter, Saturn, Urà, Neptú. Es caracteritzen per estar formats majoritàriament per gas (per això s'anomenen també gegants gasosos), pel seu enorme diàmetre i per tenir una baixa densitat (~1 gr/cm3) (en relació amb els interiors). La majoria tenen anells i tots tenen un gran nombre de satèl·lits. Els més importants són els satèl·lits galileians a Júpiter, Tità a Saturn, Tritó a Neptú i Caront a Plutó.

Plutó és un cas especial. No tan sols és el més petit dels planetes sinó que també és més petit que el planeta menor 2003 UB313. La seva composició sembla ser de roca i gel com els objectes transneptunians. La seva òrbita és bastant excèntrica i força inclinada respecte a l'eclíptica. Per tot això, en els últims anys s'ha suggerit que Plutó sigui classificat com a planeta menor i no com a planeta.

Els centaures són un tipus de planetes menors amb òrbites entre la de Júpiter i la de Neptú. Principalment, estan compostos de gel. Es pensa que poden ser un estadi intermedi entre els objectes del cinturó de Kuiper i els cometes. El més conegut és Quiró.

Els objectes transneptunians són cossos gelats amb òrbites més llunyanes que la de Neptú. Es concentren majoritàriament en la regió del cinturó de Kuiper (30-50 UA) (on també es troba Plutó) però també se n'han descobert uns quants amb òrbites més llunyanes i més inclinades anomenats objectes del disc dispers. Precisament en aquesta regió és on es troba el més gran de tots ells: 2003 UB313, que té un diàmetre de 2.400 km aproximadament. 2003 UB313 és també l'objecte conegut que en aquests moments es troba a més distància del Sol (a 97 UA). Altres objectes importants són: Orcus i Quaoar.

El núvol d'Oort és una regió que es creu que podria existir a una distància de 100.000 UA del Sol, molt més enllà de tots els objectes descoberts. És on, suposadament, es trobarien els cometes, fins que alguna cosa els pertorba i desvia la seva òrbita cap a l'interior del sistema solar. L'any 2003 es va descobrir un objecte anomenat Sedna, que és l'objecte descobert que s'allunya més del Sol. Actualment es troba a 90 UA però el seu afeli s'ha estimat en 902 UA. Es creu que podria formar part d'un núvol d'Oort intern.

Els cometes estan compostos bàsicament per gel i tenen òrbites molt excèntriques. Generalment, el seu periheli es troba en el sistema solar interior mentre que l'afeli es troba més enllà de l'òrbita de Plutó. N'hi ha de tres tipus: els de període curt (P<200 anys), els de període llarg (P>200 anys) i els d'aparició única (òrbites parabòliques o hiperbòliques). D'aquests últims no se n'ha descobert cap que provingui de fora del sistema solar sinó que tots tenen l'òrbita pertorbada per Júpiter. El més famós dels cometes és el cometa Halley.

Medi interplanetari

L'espai entre els diferents cossos del sistema solar no està buit. Està tot impregnat d'una "sopa de partícules" anomenada medi interplanetari que conté: radiació electromagnètica (fotons), plasma (electrons, protons i diferents ions), raigs còsmics, partícules microscòpiques de pols i camps magnètics (principalment el del Sol). La seva densitat és molt baixa (5 partícules/cm3 entorn de la Terra) i decreix a mesura que ens allunyem del Sol. S'estén en totes direccions fins a una distància d'unes 150 UA. El Sol, els planetes i tots els altres cossos del sistema solar es mouen a través d'aquest medi.

Altres sistemes planetaris

Des de 1992 s'han descobert planetes que orbiten altres estrelles. Aquests sistemes planetaris no es poden anomenar «sistemes solars», ja que la paraula «solar» prové de Sol. Quan parlem d'un d'aquests sistemes planetaris hem de fer-ho afegint el nom de l'estrella corresponent després de la paraula «sistema»; per exemple, sistema 55 Cancri.

Dades dels principals cossos del sistema solar

Planetes del sistema solar
Nom Diàmetre (km) Massa (Terra=1) Distància al Sol (UA) Període orbital Nº de satèl·lits Descobridor(s) Any
Mercuri 4.879 0,055 0,39 88 dies 0 - a l'antiguitat
Venus 12.104 0,816 0,72 224,7 dies 0 - a l'antiguitat
Terra 12.756 1 1,00 365,25 dies 1 - -
Mart 6.794 0,108 1,52 687 dies 2 - a l'antiguitat
Júpiter 142.984 318 5,20 11,86 anys 63 - a l'antiguitat
Saturn 120.536 95 9,54 29,42 anys 47 - a l'antiguitat
Urà 51.118 14,5 19,18 83,75 anys 27 William Herschel 1781
Neptú 49.528 17,1 30,06 163,72 anys 13 Le Verrier, Adams i Galle 1846

Cultura

El sistema solar és un tema recurrent a la ciència ficció com a marc per a les històries de la literatura i cinema d'aquest gènere. En aquest article se citen les connotacions i aparicions més remarcables de cada astre. Entre aquests, els viatges imaginaris i exploracions a la Lluna de la Terra es troben a la literatura del segle XVII. A principis del segle XX, després de l'augment del desenvolupament científic i tecnològic impulsat per la revolució industrial, els viatges ficticis a (o des de) altres planetes del sistema solar havien arribat a ser comuns en la ficció.

La literatura primerenca sobre el Sistema Solar, després d'especulacions científiques que daten del segle XVII, suposa que cada planeta va acollir les seves pròpies formes de vida natives—sovint suposant en forma d'humans, sinó en les actituds. La literatura posterior va començar a acceptar que havia límits establerts per la temperatura, la gravetat, la pressió i la composició de l'atmosfera, o la presència de líquids que establirien límits a la possibilitat de la vida com la coneixem, existent en altres planetes. Al segle XIX, la Lluna es veu com un desert sense aire, incapaç de sostenir la vida en la seva superfície (l'esperança de vida sota la superfície va continuar fins més tard).[131][132] Júpiter i els planetes més enllà eren massa grans, massa freds, i contenen atmosferes compostes de substàncies químiques tòxiques. Mercuri està massa prop del Sol i la seva superfície s'exposa a temperatures extremes. Els asteroides són massa petits i sense aire. A principis del segle XX, les perspectives de vida en el Sistema Solar es van centrar en Venus, les llunes més grans de Júpiter i Saturn, i especialment Mart.[133]

Amb l'inici de l'era espacial, les sondes planetàries va fer créixer el dubte sobre la probabilitat de vida extraterrestre en el sistema solar, almenys la vida de qualsevol magnitud major que organismes com les bactèries. A mitjan de la dècada de 1960, va ser establert fermament que la vida no podia tenir punt de suport en les superfícies hostils de Mercuri o Venus, i que Mart amb prou feines podia donar suport cap forma de vida macroscòpica en la seva superfície, i molt menys una civilització avançada. En la dècada de 1980 es va demostrar que les superfícies de les llunes de Júpiter també eren hostils per a la vida. La ficció més recent es va centrar en el sistema solar abordant la seva exploració amb fins com ara terraformació, l'enginyeria dels planetes per l'habitabilitat humana, amb la possibilitat de qualsevol tipus de vida existent.[134]

Vegeu també

Notes

  1. Les majúscules del nom varia. La IAU, l'organisme amb autoritat en relació amb la nomenclatura astronòmica, especifica capitalitzant els noms de tots els objectes astronòmics individuals (Sistema Solar). No obstant això, el nom es fa comunament en minúscules (sistema solar) – com, per exemple, en el Oxford English Dictionary i el Merriam-Webster's 11th Collegiate Dictionary
  2. Històricament, altres cossos van ser una vegada considerats planetes, incloent Plutó des del seu descobriment en 1930 fins el 2006. Per a més informació, vegeu anteriors planetes.
  3. 3,0 3,1 3,2 3,3 3,4 3,5 D'acord amb les definicions actuals, els objectes en òrbita al voltant del sol són classificats dinàmicament i físicament en tres categories: planetes, planetes nans, i cossos menors del sistema solar. Un planeta és qualsevol cos en òrbita al voltant del sol que té prou massa per formar una forma esfèrica i té netejat el seu veïnatge immediat de tots els objectes més petits. Amb aquesta definició, el sistema solar té vuit planetes coneguts: Mercuri, Venus, Terra, Mart, Júpiter, Saturn, Urà, i Neptú. Plutú no s'ajusta a aquesta definició, ja que no ha netejat la seva òrbita dels objectes del cinturó de Kuiper del voltant.[6] Un planeta nan és un cos celeste orbitant el sol que és prou massiu per ser arrodonit per la seva pròpia gravetat però que no ha netejat la seva regió propera de planetesimals i no és un satèl·lit.[6] La IAU ha reconegut cinc planetes nans: Ceres, Plutó, Haumea, Makemake, i Eris.[7] Altres objectes comunament acceptats com a planetes nans són 2007 OR10, Sedna, Orcus, i Quaoar.[8] Els planetes nans que orbiten a la regió transneptuniana s'anomenen "plutoides", encara que aquest terme no és d'ús generalitzat.[9] La resta dels objectes en òrbita al voltant del Sol són cossos menors del sistema solar.[6]
  4. Vegeu Llista de satèl·lits naturals per a la llista completa dels satèl·lits naturals dels vuit planetes i els cinc primers planetes nans.
  5. 5,0 5,1 The mass of the Solar System excluding the Sun, Jupiter and Saturn can be determined by adding together all the calculated masses for its largest objects and using rough calculations for the masses of the Oort cloud (estimated at roughly 3 Earth masses),[14] the Kuiper belt (estimated at roughly 0.1 Earth mass)[15] and the asteroid belt (estimated to be 0.0005 Earth mass)[16] for a total, rounded upwards, of ~37 Earth masses, or 8.1% of the mass in orbit around the Sun. With the combined masses of Uranus and Neptune (~31 Earth masses) subtracted, the remaining ~6 Earth masses of material comprise 1.3% of the total.
  6. If ψ is the angle between the north pole of the ecliptic and the north galactic pole then:
    ,
    where 27° 07′ 42.01″ and 12h 51m 26.282 are the declination and right ascension of the north galactic pole,[122] whereas 66° 33′ 38.6″ and 18h 0m 00 are those for the north pole of the ecliptic. (Both pairs of coordinates are for J2000 epoch.) The result of the calculation is 60.19°.

Referències

  1. Mike Brown. «Free the dwarf planets!». "Mike Brown's Planets (self-published)", 23-08-2011.
  2. Sheppard, Scott S. «The Giant Planet Satellite and Moon Page». Departament of Terrestrial Magnetism at Carniege Institution for science. [Consulta: 23 juliol 2013].
  3. Wm. Robert Johnston. «Asteroids with Satellites». Johnston's Archive, 06-12-2013. [Consulta: 12 desembre 2013].
  4. 4,0 4,1 «How Many Solar System Bodies». NASA/JPL Solar System Dynamics. [Consulta: 12 desembre 2013].
  5. 5,0 5,1 doi: 10.1016/S0273-1177(03)00578-7
    Aquesta referència està incompleta. Cal copiar-la per completar-la.
  6. 6,0 6,1 6,2 «The Final IAU Resolution on the definition of "planet" ready for voting». IAU, 24-08-2006 [Consulta: 2 març 2007].
  7. 7,0 7,1 «Dwarf Planets and their Systems». Working Group for Planetary System Nomenclature (WGPSN). U.S. Geological Survey, 07-11-2008. [Consulta: 13 juliol 2008].
  8. Ron Ekers. «IAU Planet Definition Committee». International Astronomical Union. [Consulta: 13 octubre 2008].
  9. «Plutoid chosen as name for Solar System objects like Pluto». International Astronomical Union, 11 juny 2008, Paris [Consulta: 11 juny 2008].
  10. "Today we know of more than a dozen dwarf planets in the solar system".The PI's Perspective
  11. WC Rufus «The astronomical system of Copernicus». Popular Astronomy, 31, 1923, pàg. 510. Bibcode: 1923PA.....31..510R.
  12. Weinert, Friedel. Copernicus, Darwin, & Freud: revolutions in the history and philosophy of science. Wiley-Blackwell, 2009, p. 21. ISBN 978-1-4051-8183-9. 
  13. M Woolfson «The origin and evolution of the solar system». Astronomy & Geophysics, vol. 41, 1, 2000, pàg. 1.12. DOI: 10.1046/j.1468-4004.2000.00012.x.
  14. Alessandro Morbidelli. Origin and dynamical evolution of comets and their reservoirs, 2005. 
  15. 15,0 15,1 Audrey Delsanti and David Jewitt. «The Solar System Beyond The Planets» (PDF). Institute for Astronomy, University of Hawaii, 2006. Arxivat de l'original el January 29, 2007. [Consulta: 3 gener 2007].
  16. 16,0 16,1 Krasinsky, G. A.; Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, E. I. «Hidden Mass in the Asteroid Belt». Icarus, vol. 158, 1, July 2002, pàg. 98–105. Bibcode: 2002Icar..158...98K. DOI: 10.1006/icar.2002.6837.
  17. Levison, H. F.; Morbidelli, A. «The formation of the Kuiper belt by the outward transport of bodies during Neptune's migration». Nature, vol. 426, 6965, 27-11-2003, pàg. 419–421. DOI: 10.1038/nature02120. PMID: 14647375 [Consulta: 26 maig 2012].
  18. Harold F. Levison, Martin J Duncan «From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets». Icarus, vol. 127, 1, 1997, pàg. 13–32. Bibcode: 1997Icar..127...13L. DOI: 10.1006/icar.1996.5637.
  19. Grossman, Lisa. «Planet found orbiting its star backwards for first time». NewScientist, 13-08-2009. [Consulta: 10 octubre 2009].
  20. nineplanets.org. «An Overview of the Solar System». [Consulta: 15 febrer 2007].
  21. Amir Alexander. «New Horizons Set to Launch on 9-Year Voyage to Pluto and the Kuiper Belt». The Planetary Society, 2006. [Consulta: 8 novembre 2006].
  22. 22,0 22,1 Marochnik, L. and Mukhin, L. (1995). "Is Solar System Evolution Cometary Dominated?". Shostak, G. S. Progress in the Search for Extraterrestrial Life 74: 83 
  23. doi: 10.1088/2041-8205/731/2/L42
    Aquesta referència està incompleta. Cal copiar-la per completar-la.
  24. «The Sun's Vital Statistics». Stanford Solar Center. [Consulta: 29 juliol 2008]., citing Eddy, J. A New Sun: The Solar Results From Skylab. NASA, 1979, p. 37. NASA SP-402. 
  25. Williams, Dr. David R. «Saturn Fact Sheet». NASA, September 7, 2006. [Consulta: 31 juliol 2007].
  26. Williams, Dr. David R. «Jupiter Fact Sheet». NASA, November 16, 2004. [Consulta: 8 agost 2007].
  27. Paul Robert Weissman, Torrence V. Johnson. Encyclopedia of the solar system. Academic Press, 2007, p. 615. ISBN 0-12-088589-1. 
  28. 28,0 28,1 28,2 doi:10.1016/0032-0633(95)00061-5
    Aquesta referència està incompleta. Cal copiar-la per completar-la.
  29. 29,0 29,1 29,2 29,3 doi: 10.1016/S0032-0633(99)00088-4
    Aquesta referència està incompleta. Cal copiar-la per completar-la.
  30. Michael Zellik. Astronomy: The Evolving Universe. 9th. Cambridge University Press, 2002, p. 240. ISBN 0-521-80090-0. OCLC 223304585 46685453. 
  31. Placxo, Kevin W.; Gross, Michael. Astrobiology: a brief introduction. JHU Press, 2006, p. 66. ISBN 978-0-8018-8367-5. 
  32. K. P. Schroder, Robert Cannon Smith «Distant future of the Sun and Earth revisited». Monthly Notices of the Royal Astronomical Society, 386, 1, 2008, pàg. 155–163. Bibcode: 2008MNRAS.386..155S. DOI: 10.1111/j.1365-2966.2008.13022.x.
  33. Pogge, Richard W. «The Once & Future Sun» (lecture notes). New Vistas in Astronomy, 1997. Arxivat de l'original el 27 maig 2005. [Consulta: 7 desembre 2005].
  34. «Sun: Facts & Figures». NASA. Arxivat de l'original el 2008-01-02. [Consulta: 14 maig 2009].
  35. Zirker, Jack B. Journey from the Center of the Sun. Princeton University Press, 2002, p. 120–127. ISBN 978-0-691-05781-1. 
  36. «Why is visible light visible, but not other parts of the spectrum?». The Straight Dome, 2003. [Consulta: 14 maig 2009].
  37. 37,0 37,1 Than, Ker «Astronomers Had it Wrong: Most Stars are Single». SPACE.com, 30-01-2006 [Consulta: 1r agost 2007].
  38. Smart, R. L.; Carollo, D.; Lattanzi, M. G.; McLean, B.; Spagna, A. (2001). "The Second Guide Star Catalogue and Cool Stars". Hugh R. A. Jones and Iain A. Steele Ultracool Dwarfs: New Spectral Types L and T: 119, Springer 
  39. Nir J. Shaviv «Towards a Solution to the Early Faint Sun Paradox: A Lower Cosmic Ray Flux from a Stronger Solar Wind». Journal of Geophysical Research, 108, A12, 2003, pàg. 1437. arXiv: astroph/0306477. Bibcode: 2003JGRA..108.1437S. DOI: 10.1029/2003JA009997.
  40. T. S. van Albada, Norman Baker «On the Two Oosterhoff Groups of Globular Clusters». Astrophysical Journal, 185, 1973, pàg. 477–498. Bibcode: 1973ApJ...185..477V. DOI: 10.1086/152434.
  41. Charles H. Lineweaver «An Estimate of the Age Distribution of Terrestrial Planets in the Universe: Quantifying Metallicity as a Selection Effect». Icarus, 151, 2, 09-03-2001, pàg. 307–313. arXiv: astro-ph/0012399. Bibcode: 2001Icar..151..307L. DOI: 10.1006/icar.2001.6607.
  42. «Solar Physics: The Solar Wind». Marshall Space Flight Center, 16-07-2006. [Consulta: 3 octubre 2006].
  43. 43,0 43,1 43,2 «Voyager Enters Solar System's Final Frontier». NASA. [Consulta: 2 abril 2007].
  44. Phillips, Tony. «The Sun Does a Flip». Science@NASA, 15-02-2001. [Consulta: 4 febrer 2007].
  45. A Star with two North Poles, April 22, 2003, Science @ NASA
  46. Riley, Pete «Modeling the heliospheric current sheet: Solar cycle variations». Journal of Geophysical Research, 107, 2002. Bibcode: 2002JGRA.107g.SSH8R. DOI: 10.1029/2001JA000299.
  47. Lundin, Richard «Erosion by the Solar Wind». Science, 291, 5510, 09-03-2001, pàg. 1909. DOI: 10.1126/science.1059763. PMID: 11245195.
  48. Langner, U. W.; M. S. Potgieter «Effects of the position of the solar wind termination shock and the heliopause on the heliospheric modulation of cosmic rays». Advances in Space Research, 35, 12, 2005, pàg. 2084–2090. Bibcode: 2005AdSpR..35.2084L. DOI: 10.1016/j.asr.2004.12.005.
  49. «Long-term Evolution of the Zodiacal Cloud», 1998. [Consulta: 3 febrer 2007].
  50. «ESA scientist discovers a way to shortlist stars that might have planets». ESA Science and Technology, 2003. [Consulta: 3 febrer 2007].
  51. Landgraf, M.; Liou, J.-C.; Zook, H. A.; Grün, E. «Origins of Solar System Dust beyond Jupiter». The Astronomical Journal, 123, 5, maig 2002, pàg. 2857–2861. Bibcode: 2002AJ....123.2857L. DOI: 10.1086/339704 [Consulta: 9 febrer 2007].
  52. «Inner Solar System». NASA Science (Planets). [Consulta: 9 maig 2009].
  53. Schenk P., Melosh H. J. (1994), Lobate Thrust Scarps and the Thickness of Mercury's Lithosphere, Abstracts of the 25th Lunar and Planetary Science Conference, 1994LPI....25.1203S
  54. Bill Arnett. «Mercury». The Nine Planets, 2006. [Consulta: 14 setembre 2006].
  55. Benz, W., Slattery, W. L., Cameron, A. G. W. (1988), Collisional stripping of Mercury's mantle, Icarus, v. 74, p. 516–528.
  56. Cameron, A. G. W. (1985), The partial volatilization of Mercury, Icarus, v. 64, p. 285–294.
  57. Mark Alan Bullock «The Stability of Climate on Venus» (PDF). . Southwest Research Institute, 1997 [Consulta: 26 desembre 2006].
  58. Paul Rincon. «Climate Change as a Regulator of Tectonics on Venus» (PDF). Johnson Space Center Houston, TX, Institute of Meteoritics, University of New Mexico, Albuquerque, NM, 1999. [Consulta: 19 novembre 2006].
  59. «What are the characteristics of the Solar System that lead to the origins of life?». NASA Science (Big Questions). [Consulta: 30 agost 2011].
  60. Anne E. Egger, M.A./M.S.. «Earth's Atmosphere: Composition and Structure». VisionLearning.com. [Consulta: 26 desembre 2006].
  61. David C. Gatling, Conway Leovy. «Mars Atmosphere: History and Surface Interactions». A: Lucy-Ann McFadden et al. Encyclopaedia of the Solar System, 2007, p. 301–314. 
  62. David Noever. «Modern Martian Marvels: Volcanoes?». NASA Astrobiology Magazine, 2004. [Consulta: 23 juliol 2006].
  63. «Mars: A Kid's Eye View». NASA. [Consulta: 14 maig 2009].
  64. Scott S. Sheppard, David Jewitt, and Jan Kleyna. «A Survey for Outer Satellites of Mars: Limits to Completeness». Astronomical Journal, 2004. [Consulta: 26 desembre 2006].
  65. «Are Kuiper Belt Objects asteroids? Are large Kuiper Belt Objects planets?». Cornell University. [Consulta: 1r març 2009].
  66. Petit, J.-M.; Morbidelli, A.; Chambers, J. «The Primordial Excitation and Clearing of the Asteroid Belt» (PDF). Icarus, vol. 153, 2, 2001, pàg. 338–347. Bibcode: 2001Icar..153..338P. DOI: 10.1006/icar.2001.6702 [Consulta: 22 març 2007].
  67. «IAU Planet Definition Committee». International Astronomical Union, 2006. [Consulta: 1r març 2009].
  68. «New study reveals twice as many asteroids as previously believed». ESA, 2002. [Consulta: 23 juny 2006].
  69. «On the Definition of the Term Meteoroid». Quarterly Journal of the Royal Astronomical Society, vol. 36, 3, September 1995, pàg. 281–284. Bibcode: 1995QJRAS..36..281B.
  70. «History and Discovery of Asteroids» (DOC). NASA. [Consulta: 29 agost 2006].
  71. Phil Berardelli. «Main-Belt Comets May Have Been Source Of Earths Water». SpaceDaily, 2006. [Consulta: 23 juny 2006].
  72. Barucci, M. A.; Kruikshank, D.P.; Mottola S.; Lazzarin M.. «Physical Properties of Trojan and Centaur Asteroids». A: Asteroids III. Tucson, Arizona: University of Arizona Press, 2002, p. 273–87. 
  73. «Origin and Evolution of Near-Earth Objects» (PDF). Asteroids III. University of Arizona Press, January 2002, pàg. 409–422. Bibcode: 2002aste.conf..409M.
  74. Jack J. Lissauer, David J. Stevenson. «Formation of Giant Planets» (PDF). NASA Ames Research Center; California Institute of Technology, 2006. [Consulta: 16 gener 2006].
  75. Pappalardo, R T. «Geology of the Icy Galilean Satellites: A Framework for Compositional Studies». Brown University, 1999. [Consulta: 16 gener 2006].
  76. «Density of Saturn». Fraser Cain. universetoday.com. [Consulta: 9 agost 2013].
  77. Kargel, J. S. «Cryovolcanism on the icy satellites». Earth, Moon, and Planets, vol. 67, 1994, pàg. 101–113. Bibcode: 1995EM&P...67..101K. DOI: 10.1007/BF00613296.
  78. «10 Mysteries of the Solar System». Astronomy Now, vol. 19, 2005, pàg. 65. Bibcode: 2005AsNow..19h..65H.
  79. Podolak, M.; Reynolds, R. T.; Young, R. «Post Voyager comparisons of the interiors of Uranus and Neptune». Geophysical Research Letters, vol. 17, 10, 1990, pàg. 1737. Bibcode: 1990GeoRL..17.1737P. DOI: 10.1029/GL017i010p01737.
  80. Duxbury, N. S., Brown, R. H.. «The Plausibility of Boiling Geysers on Triton». Beacon eSpace, 1995. [Consulta: 16 gener 2006].
  81. John Stansberry, Will Grundy, Mike Brown, Dale Cruikshank, John Spencer, David Trilling, Jean-Luc Margot (2007). "Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope". The Solar System Beyond Neptune: 161 
  82. Patrick Vanouplines. «Chiron biography». Vrije Universitiet Brussel, 1995. [Consulta: 23 juny 2006].
  83. Sekanina, Zdeněk «Kreutz sungrazers: the ultimate case of cometary fragmentation and disintegration?». Publications of the Astronomical Institute of the Academy of Sciences of the Czech Republic, vol. 89, 2001, pàg. 78–93. Bibcode: 2001PAICz..89...78S.
  84. Królikowska, M. «A study of the original orbits of hyperbolic comets». Astronomy & Astrophysics, vol. 376, 1, 2001, pàg. 316–324. Bibcode: 2001A&A...376..316K. DOI: 10.1051/0004-6361:20010945.
  85. Whipple, Fred L. «The activities of comets related to their aging and origin». Celestial Mechanics and Dynamical Astronomy, vol. 54, 1992, pàg. 1–11. Bibcode: 1992CeMDA..54....1W. DOI: 10.1007/BF00049540.
  86. 86,0 86,1 Stephen C. Tegler. «Kuiper Belt Objects: Physical Studies». A: Lucy-Ann McFadden et al. Encyclopedia of the Solar System, 2007, p. 605–620. 
  87. doi: 10.1086/501524
    Aquesta referència està incompleta. Cal copiar-la per completar-la.
  88. Chiang et al.; Jordan, A. B.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Elliot, J. L.; Kern, S. D.; Trilling, D. E.; Meech, K. J. «Resonance Occupation in the Kuiper Belt: Case Examples of the 5:2 and Trojan Resonances». The Astronomical Journal, vol. 126, 1, 2003, pàg. 430–443. Bibcode: 2003AJ....126..430C. DOI: 10.1086/375207 [Consulta: 15 agost 2009].
  89. M. W. Buie, R. L. Millis, L. H. Wasserman, J. L. Elliot, S. D. Kern, K. B. Clancy, E. I. Chiang, A. B. Jordan, K. J. Meech, R. M. Wagner, D. E. Trilling «Procedures, Resources and Selected Results of the Deep Ecliptic Survey». Earth, Moon, and Planets, vol. 92, 1, 2005, pàg. 113. arXiv: astro-ph/0309251. Bibcode: 2003EM&P...92..113B. DOI: 10.1023/B:MOON.0000031930.13823.be.
  90. E. Dotto1, M. A. Barucci2, and M. Fulchignoni. «Beyond Neptune, the new frontier of the Solar System» (PDF), 24-08-2006. [Consulta: 26 desembre 2006].
  91. Fajans, J.; L. Frièdland «Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators». American Journal of Physics, vol. 69, 10, October 2001, pàg. 1096–1102. DOI: 10.1119/1.1389278 [Consulta: 26 desembre 2006].
  92. Marc W. Buie. «Orbit Fit and Astrometric record for 136472». SwRI (Space Science Department), 05-04-2008. [Consulta: 15 juliol 2012].
  93. Michael E. Brown. «The largest Kuiper belt objects» (PDF). CalTech. [Consulta: 15 juliol 2012].
  94. «News Release – IAU0807: IAU names fifth dwarf planet Haumea». International Astronomical Union, 17-09-2008. [Consulta: 15 juliol 2012].
  95. David Jewitt. «The 1000 km Scale KBOs». University of Hawaii, 2005. [Consulta: 16 juliol 2006].
  96. «List Of Centaurs and Scattered-Disk Objects». IAU: Minor Planet Center. [Consulta: 2 abril 2007].
  97. doi: 10.1126/science.1139415
    Aquesta referència està incompleta. Cal copiar-la per completar-la.
  98. Littmann, Mark. Planets Beyond: Discovering the Outer Solar System. Courier Dover Publications, 2004, p. 162–163. ISBN 978-0-486-43602-9. 
  99. 99,0 99,1 99,2 «A 5-fluid hydrodynamic approach to model the Solar System-interstellar medium interaction» (PDF). Astronomy & Astrophysics, vol. 357, 2000, pàg. 268. Bibcode: 2000A&A...357..268F. See Figures 1 and 2.
  100. NASA/JPL. «Cassini's Big Sky: The View from the Center of Our Solar System», 2009. [Consulta: 20 desembre 2009].
  101. Stone, E. C.; Cummings, A. C.; McDonald, F. B.; Heikkila, B. C.; Lal, N.; Webber, W. R. «Voyager 1 explores the termination shock region and the heliosheath beyond». Science, vol. 309, 5743, September 2005, pàg. 2017–20. Bibcode: 2005Sci...309.2017S. DOI: 10.1126/science.1117684. PMID: 16179468.
  102. Stone, E. C.; Cummings, A. C.; McDonald, F. B.; Heikkila, B. C.; Lal, N.; Webber, W. R. «An asymmetric solar wind termination shock». Nature, vol. 454, 7200, July 2008, pàg. 71–4. DOI: 10.1038/nature07022. PMID: 18596802.
  103. Cook, Jia-Rui C.; Agle, D. C.; Brown, Dwayne. «NASA Spacecraft Embarks on Historic Journey Into Interstellar Space». NASA, 12-09-2013. [Consulta: 12 setembre 2013].
  104. P. C. Frisch (University of Chicago). «The Sun's Heliosphere & Heliopause». Astronomy Picture of the Day, June 24, 2002. [Consulta: 23 juny 2006].
  105. «Voyager: Interstellar Mission». NASA Jet Propulsion Laboratory, 2007. [Consulta: 8 maig 2008].
  106. R. L. McNutt, Jr. et al. (2006). "Innovative Interstellar Explorer". Physics of the Inner Heliosheath: Voyager Observations, Theory, and Future Prospects 858: 341–347. DOI:10.1063/1.2359348 
  107. Anderson, Mark. «Interstellar space, and step on it!». New Scientist, 05-01-2007. [Consulta: 5 febrer 2007].
  108. David Jewitt. «Sedna – 2003 VB12». University of Hawaii, 2004. [Consulta: 23 juny 2006].
  109. Mike Brown. «Sedna». CalTech, 2004. [Consulta: 2 maig 2007].
  110. «JPL Small-Body Database Browser: (2012 VP113)». Jet Propulsion Laboratory, 2013-10-30 last obs. [Consulta: 26 març 2014].
  111. «A new object at the edge of our Solar System discovered». Physorg.com, 26-03-2014.
  112. Stern SA, Weissman PR.. «Rapid collisional evolution of comets during the formation of the Oort cloud.». Space Studies Department, Southwest Research Institute, Boulder, Colorado, 2001. [Consulta: 19 novembre 2006].
  113. Bill Arnett. «The Kuiper Belt and the Oort Cloud». nineplanets.org, 2006. [Consulta: 23 juny 2006].
  114. T. Encrenaz, JP. Bibring, M. Blanc, MA. Barucci, F. Roques, PH. Zarka. The Solar System: Third edition. Springer, 2004, p. 1. 
  115. Durda D. D.; Stern S. A.; Colwell W. B.; Parker J. W.; Levison H. F.; Hassler D. M. «A New Observational Search for Vulcanoids in SOHO/LASCO Coronagraph Images». Icarus, vol. 148, 2004, pàg. 312–315. Bibcode: 2000Icar..148..312D. DOI: 10.1006/icar.2000.6520.
  116. Greicius, Tony. «NASA Voyager 1 Encounters New Region in Deep Space». NASA, 3 December 2012. [Consulta: 26 gener 2013].
  117. English, J. «Exposing the Stuff Between the Stars». Hubble News Desk [Consulta: 10 maig 2007].
  118. R. Drimmel, D. N. Spergel «Three Dimensional Structure of the Milky Way Disk». Astrophysical Journal, vol. 556, 2001, pàg. 181–202. arXiv: astro-ph/0101259. Bibcode: 2001ApJ...556..181D. DOI: 10.1086/321556.
  119. Eisenhauer, F. [et al]. «A Geometric Determination of the Distance to the Galactic Center». Astrophysical Journal, vol. 597, 2, 2003, pàg. L121–L124. Bibcode: 2003ApJ...597L.121E. DOI: 10.1086/380188.
  120. Leong, Stacy. «Period of the Sun's Orbit around the Galaxy (Cosmic Year)». The Physics Factbook, 2002. [Consulta: 2 abril 2007].
  121. C. Barbieri. «Elementi di Astronomia e Astrofisica per il Corso di Ingegneria Aerospaziale V settimana». IdealStars.com, 2003. [Consulta: 12 febrer 2007].
  122. Reid, M.J.; Brunthaler, A. «The Proper Motion of Sagittarius A*». The Astrophysical Journal, vol. 616, 2, 2004 2004, pàg. 883. Bibcode: 2004ApJ...616..872R. DOI: 10.1086/424960.
  123. 123,0 123,1 Leslie Mullen. «Galactic Habitable Zones». Astrobiology Magazine, 2001. [Consulta: 23 juny 2006].
  124. «Supernova Explosion May Have Caused Mammoth Extinction». Physorg.com, 2005. [Consulta: 2 febrer 2007].
  125. Our Local Galactic Neighborhood, NASA, 05-06-2013
  126. Into the Interstellar Void, Centauri Dreams, 05-06-2013
  127. «Near-Earth Supernovas». NASA. [Consulta: 23 juliol 2006].
  128. «Stars within 10 light years». SolStation. [Consulta: 2 abril 2007].
  129. «Tau Ceti». SolStation. [Consulta: 2 abril 2007].
  130. doi: 10.1038/nature11572
    Aquesta referència està incompleta. Cal copiar-la per completar-la.
  131. El Foro de Damablanca. «"La Luna", como Tema Literario» (en castellà). [Consulta: 19 març 2014].
  132. Ratto, Kathleen. «The Moon in Literature» (en anglès) p. 932-936, Desembre 1971.
  133. ETB. «Desvelando los misterios de Venus» (en castellà). [Consulta: 19 març 2014].
  134. CCM Benchmark. «Terraformation» (en francès), 2013. [Consulta: 19 març 2014].

Enllaços externs

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Sistema solar
Subprojecte Viquijúnior
Subprojecte Viquijúnior
de Viquillibres
de Viquillibres
Al Subprojecte Viquijúnior de
Viquillibres hi ha contingut infantil lliure i didàctic relatiu a Sistema solar .



Plantilla:Enllaç AB Plantilla:Enllaç AB Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD Plantilla:Enllaç AD